Математика - скачать книги или читать онлайн. Страница 24

Купить книгу Geometry of Convex Sets, автора
Pdf-книга
Geometry of Convex Sets
A gentle introduction to the geometry of convex sets in n-dimensional space Geometry of Convex Sets begins with basic definitions of the concepts of vector addition and scalar multiplication and then defines the notion of convexity for subsets of n-dimensional space. Many properties of convex sets can be discovered using just the linear structure. However, for more interesting results, it is necessary to introduce the notion of distance in order to discuss open sets, closed sets, bounded sets, and compact sets. The book illustrates the interplay between these linear and topological concepts, which makes the notion of convexity so interesting. Thoroughly class-tested, the book discusses topology and convexity in the context of normed linear spaces, specifically with a norm topology on an n-dimensional space. Geometry of Convex Sets also features: An introduction to n-dimensional geometry including points; lines; vectors; distance; norms; inner products; orthogonality; convexity; hyperplanes; and linear functionals Coverage of n-dimensional norm topology including interior points and open sets; accumulation points and closed sets; boundary points and closed sets; compact subsets of n-dimensional space; completeness of n-dimensional space; sequences; equivalent norms; distance between sets; and support hyperplanes · Basic properties of convex sets; convex hulls; interior and closure of convex sets; closed convex hulls; accessibility lemma; regularity of convex sets; affine hulls; flats or affine subspaces; affine basis theorem; separation theorems; extreme points of convex sets; supporting hyperplanes and extreme points; existence of extreme points; Krein–Milman theorem; polyhedral sets and polytopes; and Birkhoff’s theorem on doubly stochastic matrices Discussions of Helly’s theorem; the Art Gallery theorem; Vincensini’s problem; Hadwiger’s theorems; theorems of Radon and Caratheodory; Kirchberger’s theorem; Helly-type theorems for circles; covering problems; piercing problems; sets of constant width; Reuleaux triangles; Barbier’s theorem; and Borsuk’s problem Geometry of Convex Sets is a useful textbook for upper-undergraduate level courses in geometry of convex sets and is essential for graduate-level courses in convex analysis. An excellent reference for academics and readers interested in learning the various applications of convex geometry, the book is also appropriate for teachers who would like to convey a better understanding and appreciation of the field to students. I. E. Leonard, PhD, was a contract lecturer in the Department of Mathematical and Statistical Sciences at the University of Alberta. The author of over 15 peer-reviewed journal articles, he is a technical editor for the Canadian Applied Mathematical Quarterly journal. J. E. Lewis, PhD, is Professor Emeritus in the Department of Mathematical Sciences at the University of Alberta. He was the recipient of the Faculty of Science Award for Excellence in Teaching in 2004 as well as
Купить книгу Innovation Capability Maturity Model, автора Patrick  Corsi
Pdf-книга
Innovation Capability Maturity Model
Whilst innovation remains of course an approach, a process, and is still often even reduced to a set of results, it essentially reflects a way of thinking evolution. Time is up for varying the thinking methods according to capacities and learned and available competencies with a view to change… the thinking level. No domain and no sector is immune to this transformation in todays’ world Having clarified our ideas through this book, we remain ever more convinced that the leveled maturity approach will lead to real advances in innovation over the 2020 years. Hence the competitive capacities of organizations must evolve. As we strive in our quest for new inspiration sources in business, let us reckon that all is bound to evolving… including the way to evolve. In that resides the very capacity to innovate.
Купить книгу Delayed and Network Queues, автора
Pdf-книга
Delayed and Network Queues
Presents an introduction to differential equations, probability, and stochastic processes with real-world applications of queues with delay and delayed network queues Featuring recent advances in queueing theory and modeling, Delayed and Network Queues provides the most up-to-date theories in queueing model applications. Balancing both theoretical and practical applications of queueing theory, the book introduces queueing network models as tools to assist in the answering of questions on cost and performance that arise throughout the life of a computer system and signal processing. Written by well-known researchers in the field, the book presents key information for understanding the essential aspects of queues with delay and networks of queues with unreliable nodes and vacationing servers. Beginning with simple analytical fundamentals, the book contains a selection of realistic and advanced queueing models that address current deficiencies. In addition, the book presents the treatment of queues with delay and networks of queues, including possible breakdowns and disruptions that may cause delay. Delayed and Network Queues also features: Numerous examples and exercises with applications in various fields of study such as mathematical sciences, biomathematics, engineering, physics, business, health industry, and economics A wide array of practical applications of network queues and queueing systems, all of which are related to the appropriate stochastic processes Up-to-date topical coverage such as single- and multiserver queues with and without delays, along with the necessary fundamental coverage of probability and difference equations Discussions on queueing models such as single- and multiserver Markovian queues with balking, reneging, delay, feedback, splitting, and blocking, as well as their role in the treatment of networks of queues with and without delay and network reliability Delayed and Network Queues is an excellent textbook for upper-undergraduate and graduate-level courses in applied mathematics, queueing theory, queueing systems, probability, and stochastic processes. The book is also an ideal reference for academics and practitioners in mathematical sciences, biomathematics, operations research, management, engineering, physics, business, economics, health industry, and industrial engineering. Aliakbar Montazer Haghighi, PhD, is Professor and Head of the Department of Mathematics at Prairie View A&M University, USA, as well as founding Editor-in-Chief of Applications and Applied Mathematics: An International Journal (AAM). His research interests include probability, statistics, stochastic processes, and queueing theory. Among his research publications and books, Dr. Haghighi is the coauthor of Difference and Differential Equations with Applications in Queueing Theory (Wiley, 2013). Dimitar P. Mishev, PhD, is Professor in the Department of Mathematics at Prairie View A&M University, USA. His research interests include differential
Купить книгу Mathematische Statistik. Für Mathematiker, Natur- und Ingenieurwissenschaftler, автора Dieter  Rasch
Pdf-книга
Mathematische Statistik. Für Mathematiker, Natur- und Ingenieurwissenschaftler
"Mathematische Statistik" hat wegen des gro?en Anwendungsbedarfes stetig an Attraktivitat gewonnen – und auch theoretisch sind neue Ansatze entwickelt worden. Ein besonderer Schwerpunkt liegt auf der Versuchsplanung, die haufig gegenuber der Auswertung vernachlassigt wird. Unter konsequenter Berucksichtigung der Entwicklungen der letzten Jahrzehnte ist ein neues Buch entstanden. Kenntnisse in der Ma?theorie und der Wahrscheinlichkeitsrechnung sind hilfreich, aber nicht notwendig, da die Autoren die Materie leicht verstandlich beschrieben haben. Ein Schwerpunkt liegt auf der Versuchsplanung, die zu oft vernachlassigt wird und oft neben der Auswertung benachteiligt ist. Konsequenterweise nimmt in diesem Buch die Planung des Stichprobenumfangs und die Beschreibung von Versuchsanlagen einen gro?en Raum ein – immer eingebettet in die passenden Auswertungsverfahren wie die Varianz- und Regressionsanalyse. Ein Muss fur alle Natur- und Ingenieurwissenschaftler, die empirisch arbeiten und daneben auch an der Begrundung der Methoden interessiert sind.
Купить книгу Statistics with JMP. Graphs, Descriptive Statistics and Probability, автора Peter  Goos
Pdf-книга
Statistics with JMP. Graphs, Descriptive Statistics and Probability
Peter Goos, Department of Statistics, University of Leuven, Faculty of Bio-Science Engineering and University of Antwerp, Faculty of Applied Economics, Belgium David Meintrup, Department of Mathematics and Statistics, University of Applied Sciences Ingolstadt, Faculty of Mechanical Engineering, Germany Thorough presentation of introductory statistics and probability theory, with numerous examples and applications using JMP JMP: Graphs, Descriptive Statistics and Probability provides an accessible and thorough overview of the most important descriptive statistics for nominal, ordinal and quantitative data with particular attention to graphical representations. The authors distinguish their approach from many modern textbooks on descriptive statistics and probability theory by offering a combination of theoretical and mathematical depth, and clear and detailed explanations of concepts. Throughout the book, the user-friendly, interactive statistical software package JMP is used for calculations, the computation of probabilities and the creation of figures. The examples are explained in detail, and accompanied by step-by-step instructions and screenshots. The reader will therefore develop an understanding of both the statistical theory and its applications. Traditional graphs such as needle charts, histograms and pie charts are included, as well as the more modern mosaic plots, bubble plots and heat maps. The authors discuss probability theory, particularly discrete probability distributions and continuous probability densities, including the binomial and Poisson distributions, and the exponential, normal and lognormal densities. They use numerous examples throughout to illustrate these distributions and densities. Key features: Introduces each concept with practical examples and demonstrations in JMP. Provides the statistical theory including detailed mathematical derivations. Presents illustrative examples in each chapter accompanied by step-by-step instructions and screenshots to help develop the reader’s understanding of both the statistical theory and its applications. A supporting website with data sets and other teaching materials. This book is equally aimed at students in engineering, economics and natural sciences who take classes in statistics as well as at masters/advanced students in applied statistics and probability theory. For teachers of applied statistics, this book provides a rich resource of course material, examples and applications.
Купить книгу Linear Models, автора
Pdf-книга
Linear Models
Provides an easy-to-understand guide to statistical linear models and its uses in data analysis This book defines a broad spectrum of statistical linear models that is useful in the analysis of data. Considerable rewriting was done to make the book more reader friendly than the first edition. Linear Models, Second Edition is written in such a way as to be self-contained for a person with a background in basic statistics, calculus and linear algebra. The text includes numerous applied illustrations, numerical examples, and exercises, now augmented with computer outputs in SAS and R. Also new to this edition is: • A greatly improved internal design and format • A short introductory chapter to ease understanding of the order in which topics are taken up • Discussion of additional topics including multiple comparisons and shrinkage estimators • Enhanced discussions of generalized inverses, the MINQUE, Bayes and Maximum Likelihood estimators for estimating variance components Furthermore, in this edition, the second author adds many pedagogical elements throughout the book. These include numbered examples, end-of-example and end-of-proof symbols, selected hints and solutions to exercises available on the book’s website, and references to “big data” in everyday life. Featuring a thorough update, Linear Models, Second Edition includes: • A new internal format, additional instructional pedagogy, selected hints and solutions to exercises, and several more real-life applications • Many examples using SAS and R with timely data sets • Over 400 examples and exercises throughout the book to reinforce understanding Linear Models, Second Edition is a textbook and a reference for upper-level undergraduate and beginning graduate-level courses on linear models, statisticians, engineers, and scientists who use multiple regression or analysis of variance in their work. SHAYLE R. SEARLE, PhD, was Professor Emeritus of Biometry at Cornell University. He was the author of the first edition of Linear Models, Linear Models for Unbalanced Data, and Generalized, Linear, and Mixed Models (with Charles E. McCulloch), all from Wiley. The first edition of Linear Models appears in the Wiley Classics Library. MARVIN H. J. GRUBER, PhD, is Professor Emeritus at Rochester Institute of Technology, School of Mathematical Sciences. Dr. Gruber has written a number of papers and has given numerous presentations at professional meetings during his tenure as a professor at RIT. His fields of interest include regression estimators and the improvement of their efficiency using shrinkage estimators. He has written and published two books on this topic. Another of his books, Matrix Algebra for Linear Models, also published by Wiley, provides good preparation for studying Linear Models. He is a member of the American Mathematical Society, the Institute of Mathematical Statistics and the American Statistical Association.
Купить книгу Introductory Biostatistics, автора
Pdf-книга
Introductory Biostatistics
Maintaining the same accessible and hands-on presentation, Introductory Biostatistics, Second Edition continues to provide an organized introduction to basic statistical concepts commonly applied in research across the health sciences. With plenty of real-world examples, the new edition provides a practical, modern approach to the statistical topics found in the biomedical and public health fields. Beginning with an overview of descriptive statistics in the health sciences, the book delivers topical coverage of probability models, parameter estimation, and hypothesis testing. Subsequently, the book focuses on more advanced topics with coverage of regression analysis, logistic regression, methods for count data, analysis of survival data, and designs for clinical trials. This extensive update of Introductory Biostatistics, Second Edition includes: • A new chapter on the use of higher order Analysis of Variance (ANOVA) in factorial and block designs • A new chapter on testing and inference methods for repeatedly measured outcomes including continuous, binary, and count outcomes • R incorporated throughout along with SAS®, allowing readers to replicate results from presented examples with either software • Multiple additional exercises, with partial solutions available to aid comprehension of crucial concepts • Notes on Computations sections to provide further guidance on the use of software • A related website that hosts the large data sets presented throughout the book Introductory Biostatistics, Second Edition is an excellent textbook for upper-undergraduate and graduate students in introductory biostatistics courses. The book is also an ideal reference for applied statisticians working in the fields of public health, nursing, dentistry, and medicine.
Купить книгу Computational Statistics, автора
Pdf-книга
Computational Statistics
This new edition continues to serve as a comprehensive guide to modern and classical methods of statistical computing. The book is comprised of four main parts spanning the field: Optimization Integration and Simulation Bootstrapping Density Estimation and Smoothing Within these sections,each chapter includes a comprehensive introduction and step-by-step implementation summaries to accompany the explanations of key methods. The new edition includes updated coverage and existing topics as well as new topics such as adaptive MCMC and bootstrapping for correlated data. The book website now includes comprehensive R code for the entire book. There are extensive exercises, real examples, and helpful insights about how to use the methods in practice.
Купить книгу The Probabilistic Method, автора Noga  Alon
Pdf-книга
The Probabilistic Method
Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” – MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.
Купить книгу Probability and Random Processes, автора Venkatarama  Krishnan
Pdf-книга
Probability and Random Processes
The second edition enhanced with new chapters, figures, and appendices to cover the new developments in applied mathematical functions This book examines the topics of applied mathematical functions to problems that engineers and researchers solve daily in the course of their work. The text covers set theory, combinatorics, random variables, discrete and continuous probability, distribution functions, convergence of random variables, computer generation of random variates, random processes and stationarity concepts with associated autocovariance and cross covariance functions, estimation theory and Wiener and Kalman filtering ending with two applications of probabilistic methods. Probability tables with nine decimal place accuracy and graphical Fourier transform tables are included for quick reference. The author facilitates understanding of probability concepts for both students and practitioners by presenting over 450 carefully detailed figures and illustrations, and over 350 examples with every step explained clearly and some with multiple solutions. Additional features of the second edition of Probability and Random Processes are: Updated chapters with new sections on Newton-Pepys’ problem; Pearson, Spearman, and Kendal correlation coefficients; adaptive estimation techniques; birth and death processes; and renewal processes with generalizations A new chapter on Probability Modeling in Teletraffic Engineering written by Kavitha Chandra An eighth appendix examining the computation of the roots of discrete probability-generating functions With new material on theory and applications of probability, Probability and Random Processes, Second Edition is a thorough and comprehensive reference for commonly occurring problems in probabilistic methods and their applications.
Купить книгу Handbook of Regression Analysis, автора
Pdf-книга
Handbook of Regression Analysis
A Comprehensive Account for Data Analysts of the Methods and Applications of Regression Analysis. Written by two established experts in the field, the purpose of the Handbook of Regression Analysis is to provide a practical, one-stop reference on regression analysis. The focus is on the tools that both practitioners and researchers use in real life. It is intended to be a comprehensive collection of the theory, methods, and applications of regression methods, but it has been deliberately written at an accessible level. The handbook provides a quick and convenient reference or “refresher” on ideas and methods that are useful for the effective analysis of data and its resulting interpretations. Students can use the book as an introduction to and/or summary of key concepts in regression and related course work (including linear, binary logistic, multinomial logistic, count, and nonlinear regression models). Theory underlying the methodology is presented when it advances conceptual understanding and is always supplemented by hands-on examples. References are supplied for readers wanting more detailed material on the topics discussed in the book. R code and data for all of the analyses described in the book are available via an author-maintained website. «I enjoyed the presentation of the Handbook, and I would be happy to recommend this nice handy book as a reference to my students. The clarity of the writing and proper choices of examples allows the presentations ofmany statisticalmethods shine. The quality of the examples at the end of each chapter is a strength. They entail explanations of the resulting R outputs and successfully guide readers to interpret them.» American Statistician
Купить книгу Introduction to Bayesian Statistics, автора
Pdf-книга
Introduction to Bayesian Statistics
"…this edition is useful and effective in teaching Bayesian inference at both elementary and intermediate levels. It is a well-written book on elementary Bayesian inference, and the material is easily accessible. It is both concise and timely, and provides a good collection of overviews and reviews of important tools used in Bayesian statistical methods." There is a strong upsurge in the use of Bayesian methods in applied statistical analysis, yet most introductory statistics texts only present frequentist methods. Bayesian statistics has many important advantages that students should learn about if they are going into fields where statistics will be used. In this third Edition, four newly-added chapters address topics that reflect the rapid advances in the field of Bayesian statistics. The authors continue to provide a Bayesian treatment of introductory statistical topics, such as scientific data gathering, discrete random variables, robust Bayesian methods, and Bayesian approaches to inference for discrete random variables, binomial proportions, Poisson, and normal means, and simple linear regression. In addition, more advanced topics in the field are presented in four new chapters: Bayesian inference for a normal with unknown mean and variance; Bayesian inference for a Multivariate Normal mean vector; Bayesian inference for the Multiple Linear Regression Model; and Computational Bayesian Statistics including Markov Chain Monte Carlo. The inclusion of these topics will facilitate readers' ability to advance from a minimal understanding of Statistics to the ability to tackle topics in more applied, advanced level books. Minitab macros and R functions are available on the book's related website to assist with chapter exercises. Introduction to Bayesian Statistics, Third Edition also features: Topics including the Joint Likelihood function and inference using independent Jeffreys priors and join conjugate prior The cutting-edge topic of computational Bayesian Statistics in a new chapter, with a unique focus on Markov Chain Monte Carlo methods Exercises throughout the book that have been updated to reflect new applications and the latest software applications Detailed appendices that guide readers through the use of R and Minitab software for Bayesian analysis and Monte Carlo simulations, with all related macros available on the book's website Introduction to Bayesian Statistics, Third Edition is a textbook for upper-undergraduate or first-year graduate level courses on introductory statistics course with a Bayesian emphasis. It can also be used as a reference work for statisticians who require a working knowledge of Bayesian statistics.