Математика - скачать книги или читать онлайн. Страница 26

Купить книгу Mathematics for Modeling and Scientific Computing, автора Thierry  Goudon
Pdf-книга
Mathematics for Modeling and Scientific Computing
This book provides the mathematical basis for investigating numerically equations from physics, life sciences or engineering. Tools for analysis and algorithms are confronted to a large set of relevant examples that show the difficulties and the limitations of the most naïve approaches. These examples not only provide the opportunity to put into practice mathematical statements, but modeling issues are also addressed in detail, through the mathematical perspective.
Купить книгу Categorical Data Analysis by Example, автора
Pdf-книга
Categorical Data Analysis by Example
Introduces the key concepts in the analysis of categoricaldata with illustrative examples and accompanying R code This book is aimed at all those who wish to discover how to analyze categorical data without getting immersed in complicated mathematics and without needing to wade through a large amount of prose. It is aimed at researchers with their own data ready to be analyzed and at students who would like an approachable alternative view of the subject. Each new topic in categorical data analysis is illustrated with an example that readers can apply to their own sets of data. In many cases, R code is given and excerpts from the resulting output are presented. In the context of log-linear models for cross-tabulations, two specialties of the house have been included: the use of cobweb diagrams to get visual information concerning significant interactions, and a procedure for detecting outlier category combinations. The R code used for these is available and may be freely adapted. In addition, this book: Uses an example to illustrate each new topic in categorical data Provides a clear explanation of an important subject Is understandable to most readers with minimal statistical and mathematical backgrounds Contains examples that are accompanied by R code and resulting output Includes starred sections that provide more background details for interested readers Categorical Data Analysis by Example is a reference for students in statistics and researchers in other disciplines, especially the social sciences, who use categorical data. This book is also a reference for practitioners in market research, medicine, and other fields.
Купить книгу Advanced Analysis of Variance, автора Chihiro  Hirotsu
Pdf-книга
Advanced Analysis of Variance
Introducing a revolutionary new model for the statistical analysis of experimental data In this important book, internationally acclaimed statistician, Chihiro Hirotsu, goes beyond classical analysis of variance (ANOVA) model to offer a unified theory and advanced techniques for the statistical analysis of experimental data. Dr. Hirotsu introduces the groundbreaking concept of advanced analysis of variance (AANOVA) and explains how the AANOVA approach exceeds the limitations of ANOVA methods to allow for global reasoning utilizing special methods of simultaneous inference leading to individual conclusions. Focusing on normal, binomial, and categorical data, Dr. Hirotsu explores ANOVA theory and practice and reviews current developments in the field. He then introduces three new advanced approaches, namely: testing for equivalence and non-inferiority; simultaneous testing for directional (monotonic or restricted) alternatives and change-point hypotheses; and analyses emerging from categorical data. Using real-world examples, he shows how these three recognizable families of problems have important applications in most practical activities involving experimental data in an array of research areas, including bioequivalence, clinical trials, industrial experiments, pharmaco-statistics, and quality control, to name just a few. • Written in an expository style which will encourage readers to explore applications for AANOVA techniques in their own research • Focuses on dealing with real data, providing real-world examples drawn from the fields of statistical quality control, clinical trials, and drug testing • Describes advanced methods developed and refined by the author over the course of his long career as research engineer and statistician • Introduces advanced technologies for AANOVA data analysis that build upon the basic ANOVA principles and practices Introducing a breakthrough approach to statistical analysis which overcomes the limitations of the ANOVA model, Advanced Analysis of Variance is an indispensable resource for researchers and practitioners working in fields within which the statistical analysis of experimental data is a crucial research component. Chihiro Hirotsu is a Senior Researcher at the Collaborative Research Center, Meisei University, and Professor Emeritus at the University of Tokyo. He is a fellow of the American Statistical Association, an elected member of the International Statistical Institute, and he has been awarded the Japan Statistical Society Prize (2005) and the Ouchi Prize (2006). His work has been published in Biometrika, Biometrics, and Computational Statistics & Data Analysis, among other premier research journals.
Купить книгу Illuminating Statistical Analysis Using Scenarios and Simulations, автора
Pdf-книга
Illuminating Statistical Analysis Using Scenarios and Simulations
Features an integrated approach of statistical scenarios and simulations to aid readers in developing key intuitions needed to understand the wide ranging concepts and methods of statistics and inference Illuminating Statistical Analysis Using Scenarios and Simulations presents the basic concepts of statistics and statistical inference using the dual mechanisms of scenarios and simulations. This approach helps readers develop key intuitions and deep understandings of statistical analysis. Scenario-specific sampling simulations depict the results that would be obtained by a very large number of individuals investigating the same scenario, each with their own evidence, while graphical depictions of the simulation results present clear and direct pathways to intuitive methods for statistical inference. These intuitive methods can then be easily linked to traditional formulaic methods, and the author does not simply explain the linkages, but rather provides demonstrations throughout for a broad range of statistical phenomena. In addition, induction and deduction are repeatedly interwoven, which fosters a natural «need to know basis» for ordering the topic coverage. Examining computer simulation results is central to the discussion and provides an illustrative way to (re)discover the properties of sample statistics, the role of chance, and to (re)invent corresponding principles of statistical inference. In addition, the simulation results foreshadow the various mathematical formulas that underlie statistical analysis. In addition, this book: • Features both an intuitive and analytical perspective and includes a broad introduction to the use of Monte Carlo simulation and formulaic methods for statistical analysis • Presents straight-forward coverage of the essentials of basic statistics and ensures proper understanding of key concepts such as sampling distributions, the effects of sample size and variance on uncertainty, analysis of proportion, mean and rank differences, covariance, correlation, and regression • Introduces advanced topics such as Bayesian statistics, data mining, model cross-validation, robust regression, and resampling • Contains numerous example problems in each chapter with detailed solutions as well as an appendix that serves as a manual for constructing simulations quickly and easily using Microsoft® Office Excel® Illuminating Statistical Analysis Using Scenarios and Simulations is an ideal textbook for courses, seminars, and workshops in statistics and statistical inference and is appropriate for self-study as well. The book also serves as a thought-provoking treatise for researchers, scientists, managers, technicians, and others with a keen interest in statistical analysis. Jeffrey E. Kottemann, Ph.D., is Professor in the Perdue School at Salisbury University. Dr. Kottemann has published articles in a wide variety of academic research journals in the fields of business administration, computer science, decision sciences, economi
Купить книгу Statistical Implications of Turing's Formula, автора Zhiyi  Zhang
Pdf-книга
Statistical Implications of Turing's Formula
Features a broad introduction to recent research on Turing’s formula and presents modern applications in statistics, probability, information theory, and other areas of modern data science Turing's formula is, perhaps, the only known method for estimating the underlying distributional characteristics beyond the range of observed data without making any parametric or semiparametric assumptions. This book presents a clear introduction to Turing’s formula and its connections to statistics. Topics with relevance to a variety of different fields of study are included such as information theory; statistics; probability; computer science inclusive of artificial intelligence and machine learning; big data; biology; ecology; and genetics. The author provides examinations of many core statistical issues within modern data science from Turing's perspective. A systematic approach to long-standing problems such as entropy and mutual information estimation, diversity index estimation, domains of attraction on general alphabets, and tail probability estimation is presented in light of the most up-to-date understanding of Turing's formula. Featuring numerous exercises and examples throughout, the author provides a summary of the known properties of Turing's formula and explains how and when it works well; discusses the approach derived from Turing's formula in order to estimate a variety of quantities, all of which mainly come from information theory, but are also important for machine learning and for ecological applications; and uses Turing's formula to estimate certain heavy-tailed distributions. In summary, this book: • Features a unified and broad presentation of Turing’s formula, including its connections to statistics, probability, information theory, and other areas of modern data science • Provides a presentation on the statistical estimation of information theoretic quantities • Demonstrates the estimation problems of several statistical functions from Turing's perspective such as Simpson's indices, Shannon's entropy, general diversity indices, mutual information, and Kullback–Leibler divergence • Includes numerous exercises and examples throughout with a fundamental perspective on the key results of Turing’s formula Statistical Implications of Turing's Formula is an ideal reference for researchers and practitioners who need a review of the many critical statistical issues of modern data science. This book is also an appropriate learning resource for biologists, ecologists, and geneticists who are involved with the concept of diversity and its estimation and can be used as a textbook for graduate courses in mathematics, probability, statistics, computer science, artificial intelligence, machine learning, big data, and information theory. Zhiyi Zhang, PhD, is Professor of Mathematics and Statistics at The University of North Carolina at Charlotte. He is an active consultant in both industry and government on a wide range of statistical issues, and his c
Купить книгу Numerical Methods for Inverse Problems, автора Michel  Kern
Pdf-книга
Numerical Methods for Inverse Problems
This book studies methods to concretely address inverse problems. An inverse problem arises when the causes that produced a given effect must be determined or when one seeks to indirectly estimate the parameters of a physical system. The author uses practical examples to illustrate inverse problems in physical sciences. He presents the techniques and specific methods chosen to solve inverse problems in a general domain of application, choosing to focus on a small number of methods that can be used in most applications. This book is aimed at readers with a mathematical and scientific computing background. Despite this, it is a book with a practical perspective. The methods described are applicable, have been applied, and are often illustrated by numerical examples.
Купить книгу Discrete q-Distributions, автора
Pdf-книга
Discrete q-Distributions
A self-contained study of the various applications and developments of discrete distribution theory Written by a well-known researcher in the field, Discrete q-Distributions features an organized presentation of discrete q-distributions based on the stochastic model of a sequence of independent Bernoulli trials. In an effort to keep the book self-contained, the author covers all of the necessary basic q-sequences and q-functions. The book begins with an introduction of the notions of a q-power, a q-factorial, and a q-binomial coefficient and proceeds to discuss the basic q-combinatorics and q-hypergeometric series. Next, the book addresses discrete q-distributions with success probability at a trial varying geometrically, with rate q, either with the number of previous trials or with the number of previous successes. Further, the book examines two interesting stochastic models with success probability at any trial varying geometrically both with the number of trials and the number of successes and presents local and global limit theorems. Discrete q-Distributions also features: Discussions of the definitions and theorems that highlight key concepts and results Several worked examples that illustrate the applications of the presented theory Numerous exercises at varying levels of difficulty that consolidate the concepts and results as well as complement, extend, or generalize the results Detailed hints and answers to all the exercises in an appendix to help less-experienced readers gain a better understanding of the content An up-to-date bibliography that includes the latest trends and advances in the field and provides a collective source for further research An Instructor’s Solutions Manual available on a companion website A unique reference for researchers and practitioners in statistics, mathematics, physics, engineering, and other applied sciences, Discrete q-Distributions is also an appropriate textbook for graduate-level courses in discrete statistical distributions, distribution theory, and combinatorics.
Купить книгу A Signal Theoretic Introduction to Random Processes, автора
Pdf-книга
A Signal Theoretic Introduction to Random Processes
A fresh introduction to random processes utilizing signal theory By incorporating a signal theory basis, A Signal Theoretic Introduction to Random Processes presents a unique introduction to random processes with an emphasis on the important random phenomena encountered in the electronic and communications engineering field. The strong mathematical and signal theory basis provides clarity and precision in the statement of results. The book also features: A coherent account of the mathematical fundamentals and signal theory that underpin the presented material Unique, in-depth coverage of material not typically found in introductory books Emphasis on modeling and notation that facilitates development of random process theory Coverage of the prototypical random phenomena encountered in electrical engineering Detailed proofs of results A related website with solutions to the problems found at the end of each chapter A Signal Theoretic Introduction to Random Processes is a useful textbook for upper-undergraduate and graduate-level courses in applied mathematics as well as electrical and communications engineering departments. The book is also an excellent reference for research engineers and scientists who need to characterize random phenomena in their research.
Купить книгу Space Strategy, автора Jean-Luc  Lefebvre
Pdf-книга
Space Strategy
Strategy is the art of thinking about war before it occurs. Noting that space already plays a role in all of today’s wars, Space Strategy studies how conflicts are extending into this new domain. The book defines extra-atmospheric space and focuses on its varying features and constraints. By exploring the opportunities for action provided by different strategic positions, the book analyzes the most plausible combat scenarios from, against and within space. It explains the concepts of militarization, weaponization and martialization of space and shows how space systems constitute an essential component of information literacy – the key to power in the 21st Century. Space Strategy then demonstrates why our society, having become space-dependent, must take appropriate measures to develop its spatioresilience. Finally, the author summarizes his reflections in the form of a mnemonic listing twelve principles of space strategy. Completed by educational appendices and a glossary containing one thousand entries, Space Strategy meets the needs of students, researchers or any other reader curious about expanding their knowledge of strategy.
Купить книгу Matrix Analysis for Statistics, автора
Pdf-книга
Matrix Analysis for Statistics
An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms. An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features: • New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors • Additional problems and chapter-end practice exercises at the end of each chapter • Extensive examples that are familiar and easy to understand • Self-contained chapters for flexibility in topic choice • Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics. James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.
Купить книгу Applications of Combinatorial Optimization, автора
Pdf-книга
Applications of Combinatorial Optimization
Combinatorial optimization is a multidisciplinary scientific area, lying in the interface of three major scientific domains: mathematics, theoretical computer science and management. The three volumes of the Combinatorial Optimization series aim to cover a wide range of topics in this area. These topics also deal with fundamental notions and approaches as with several classical applications of combinatorial optimization. Concepts of Combinatorial Optimization, is divided into three parts: – On the complexity of combinatorial optimization problems, presenting basics about worst-case and randomized complexity; – Classical solution methods, presenting the two most-known methods for solving hard combinatorial optimization problems, that are Branch-and-Bound and Dynamic Programming; – Elements from mathematical programming, presenting fundamentals from mathematical programming based methods that are in the heart of Operations Research since the origins of this field.
Купить книгу Introduction to Topology and Geometry, автора Catherine  Stenson
Pdf-книга
Introduction to Topology and Geometry
An easily accessible introduction to over three centuries of innovations in geometry Praise for the First Edition “. . . a welcome alternative to compartmentalized treatments bound to the old thinking. This clearly written, well-illustrated book supplies sufficient background to be self-contained.” —CHOICE This fully revised new edition offers the most comprehensive coverage of modern geometry currently available at an introductory level. The book strikes a welcome balance between academic rigor and accessibility, providing a complete and cohesive picture of the science with an unparalleled range of topics. Illustrating modern mathematical topics, Introduction to Topology and Geometry, Second Edition discusses introductory topology, algebraic topology, knot theory, the geometry of surfaces, Riemann geometries, fundamental groups, and differential geometry, which opens the doors to a wealth of applications. With its logical, yet flexible, organization, the Second Edition: • Explores historical notes interspersed throughout the exposition to provide readers with a feel for how the mathematical disciplines and theorems came into being • Provides exercises ranging from routine to challenging, allowing readers at varying levels of study to master the concepts and methods • Bridges seemingly disparate topics by creating thoughtful and logical connections • Contains coverage on the elements of polytope theory, which acquaints readers with an exposition of modern theory Introduction to Topology and Geometry, Second Edition is an excellent introductory text for topology and geometry courses at the upper-undergraduate level. In addition, the book serves as an ideal reference for professionals interested in gaining a deeper understanding of the topic.