МАКС БОРН
Его имя ставят в один ряд с такими именами, как Планк и Эйнштейн, Бор, Гейзенберг. Борн по праву считается одним из основателей квантовой механики. Ему принадлежат многие основополагающие работы в области теории строения атома, квантовой механики и теории относительности.
Макс Борн родился 11 декабря 1882 года в Бреслау (ныне Вроцлав, Польша) и был старшим из двух детей Густава Борна, профессора анатомии университета Бреслау, и Маргарет (в девичестве Кауфман) Борн, талантливой пианистки, вышедшей из известной семьи силезских промышленников. Максу было четыре года, когда умерла его мать, а четыре года спустя его отец женился на Берте Липштейн, которая родила ему сына. Поскольку его семья была связана с ведущими интеллектуальными и артистическими кругами Бреслау, Макс рос в атмосфере, благоприятной для его развития. Начальное образование он получил в гимназии кайзера Вильгельма в Бреслау.
Хотя Макс собирался стать инженером, его отец посоветовал ему прослушать разнообразные курсы в университете Бреслау, куда он и поступил в 1901 году, после смерти своего отца. В университете Макс изучал многие предметы, однако вскоре увлёкся математикой и физикой. Два летних семестра он провёл в университетах Гейдельберга и Цюриха. В 1904 году он поступил в Гёттингенский университет, где занимался под руководством известных математиков — Давида Гильберта и Феликса Клейна, а также Германа Минковского. Гильберт, оценив интеллектуальные способности Борна, сделал его своим ассистентом в 1905 году. Макс, кроме того, изучал в Гёттингене астрономию. Ко времени получения степени доктора в 1907 году за диссертацию по теории устойчивости упругих тел его интересы переместились в область электродинамики и теории относительности.
По окончании университета Борн был призван на год на военную службу в кавалерийский полк в Берлине, но вскоре, спустя несколько месяцев, был демобилизован из-за астмы. Этот краткий опыт воинской службы укрепил в нём неприязнь к войне и милитаризму, которая сохранилась у него на всю жизнь.
Следующие шесть месяцев Борн занимался в Кембриджском университете, где посещал лекции Дж. Дж. Томсона. Вернувшись в Бреслау, он начал проводить экспериментальные исследования, а затем приступил к теоретической работе по теории относительности, развитой Альбертом Эйнштейном в 1905 году. Объединив идеи Эйнштейна с математическим подходом Минковского, Борн открыл новый упрощённый метод вычисления массы электрона. Оценив эту работу, Минковский пригласил Борна вернуться в Гёттинген и стать его ассистентом. Однако Борн проработал с ним всего лишь несколько недель вследствие внезапной кончины Минковского, последовавшей в начале 1909 года.
Закончив в том же году теоретическое изучение теории относительности, Борн стал лектором в Гёттингене. Здесь он исследовал свойства кристаллов в зависимости от расположения атомов. Вместе с Теодором фон Карманом Борн разработал точную теорию зависимости теплоёмкости от температуры — теорию, которая до сих пор лежит в основе изучения кристаллов. Кристаллическая структура оставалась главной областью исследований Борна вплоть до середины двадцатых годов.
В 1913 году Борн женился на Хедвиге Еренберг, дочери гёттингенского профессора права. У них родились сын; который впоследствии стал главой фармакологического факультета в Кембридже, и две дочери.
В 1915 году Борн стал ассистент-профессором теоретической физики у Макса Планка в Берлинском университете. Во время Первой мировой войны, несмотря на своё отвращение к войне, Борн проводил военные исследования по звукометрии и давал оценку новым изобретениям в области артиллерии. Именно во время войны началась его дружба с Эйнштейном. Кроме физики, этих двух людей объединяла любовь к музыке, и они с удовольствием исполняли вместе сонаты — Эйнштейн на скрипке, а Борн на фортепиано.
После войны Борн продолжал исследования по теории кристаллов, работая вместе с Фрицем Габером над установлением связи между физическими свойствами кристаллов и химической энергией составляющих их компонент. В результате усилий двух учёных была создана аналитическая техника, известная под названием цикла Борна—Габера.
Когда Макс фон Лауэ выразил желание работать с Планком, Борн согласился поменяться с ним временно постами и отправился в 1919 году во Франкфуртский университет, чтобы занять место профессора физики и директора Института теоретической физики. Вернувшись через два года в Гёттинген, Борн стал директором университетского Физического института. Он поставил условие, чтобы его старый приятель и коллега Джеймс Франк был назначен в этот же институт руководить экспериментальной работой. Под руководством Борна Физический институт стал ведущим центром теоретической физики и математики.
Вначале Борн продолжил свои исследования по теории кристаллов в Гёттингене, но вскоре он стал разрабатывать математические основы квантовой теории. Хотя его работа с кристаллами была крайне важной и помогла заложить основы современной физики твёрдого тела, именно вклад Борна в квантовую теорию принёс ему самый большой успех.
К двадцатым годам большинство физиков было убеждено, что всякая энергия квантуется, однако первоначальная квантовая теория оставляла нерешёнными множество проблем. Борн хотел создать общую теорию, которая охватывала бы все квантовые эффекты.
В 1925 году ассистент Борна Вернер Гейзенберг сделал важнейший шаг в решении этой задачи, предположив, что в основе всех атомных явлений лежат определённые математические принципы. Хотя сам Гейзенберг не смог разобраться в математических основаниях найденных им соотношений, Борн понял, что Гейзенберг пользовался матричными операциями (математические преобразования, совершаемые по определённым правилам над таблицами чисел или переменных). С одним из студентов, Паскуалем Иорданом, Борн формализовал подход Гейзенберга и опубликовал результаты в этом же году в статье, озаглавленной «О квантовой механике». Термин квантовая механика, введённый Борном, должен был обозначать новую высокоматематизированную квантовую теорию, развитую в конце двадцатых годов.
Зимой 1925–1926 годов Борн был приглашённым лектором в Массачусетском технологическом институте. В 1926 году Шрёдингер развил волновую механику, содержащую формулировки, альтернативные квантовой механике, которая в свою очередь, как он показал, была эквивалентна формулировкам матричной механики. Возвращаясь к некоторым методам классической физики, волновая механика трактует субатомные частицы как волны, описываемые волновой функцией. Применяя принципы волновой механики и матричной механики в теории атомного рассеяния, Борн сделал вывод, что квадрат волновой функции, вычисленный в некоторой точке пространства, выражает вероятность того, что соответствующая частица находится именно в этом месте. По этой причине, утверждал он, квантовая механика даёт лишь вероятностное описание положения частицы. Борновское описание рассеяния частиц, которое стало известным как борновское приближение, оказалось крайне важным для вычислений в физике высоких энергий. Вскоре после опубликования борновского приближения Гейзенберг обнародовал свой знаменитый принцип неопределённости, который утверждает, что нельзя одновременно определить точное положение и импульс частицы. Снова здесь возможно лишь статистическое предсказание.
Статистическая интерпретация квантовой механики развивалась дальше Борном, Гейзенбергом и Бором; поскольку Бор, который жил в Копенгагене, проделал большую работу по этой интерпретации, она стала известна как копенгагенская интерпретация. Хотя ряд основателей квантовой теории, включая Планка, Эйнштейна и Шрёдингера, не соглашались с таким подходом, поскольку он отвергает причинность, большинство физиков приняло копенгагенскую интерпретацию как наиболее плодотворную. Борн и Эйнштейн вели длительную полемику в письмах по этому вопросу, хотя фундаментальное научное расхождение никогда не омрачало их дружбы. Известность Борна как реформатора квантовой механики, которая легла в основу новой картины строения атома и последующего развития физики и химии, привлекла многих одарённых молодых физиков к нему в Гёттинген.