Э. находится в стадии интенсивного развития; для неё характерно появление новых областей и создание новых направлений в уже существующих областях.

  Технология электронных приборов. Конструирование и изготовление электронных приборов базируются на использовании сочетания разнообразных свойств материалов и физико-химических процессов. Поэтому необходимо глубоко понимать используемые процессы и их влияние на свойства приборов, уметь точно управлять этими процессами. Исключительная важность физико-химических исследований и разработка научных основ технологии в Э. обусловлены, во-первых, зависимостью свойств электронных приборок от наличия примесей в материалах и веществ, сорбированных на поверхностях рабочих элементов приборов, а также от состава газа и степени разряжения среды, окружающей эти элементы; во-вторых, — зависимостью надёжности и долговечности электронных приборов от степени стабильности применяемых исходных материалов и управляемости технологии. Достижения технологии нередко дают толчок развитию новых направлений в Э. Общие для всех направлений Э. особенности технологии состоят в исключительно высоких (по сравнению с другими отраслями техники) требованиях, предъявляемых в электронной промышленности к свойствам используемых исходных материалов; степени защиты изделий от загрязнения в процессе производства; геометрической точности изготовления электронных приборов. С выполнением первого из этих требований связано создание многих материалов, обладающих сверхвысокими чистотой и совершенством структуры, с заранее заданными физико-химическими свойствами — специальных сплавов монокристаллов, керамики, стекол и др. Создание таких материалов и исследование их свойств составляют предмет специальной научно-технической дисциплины — электронного материаловедения. Одной из самых острых проблем технологии, связанных с выполнением второго требования, является борьба за уменьшение запылённости газовой среды, в которой проходят наиболее важные технологические процессы. В ряде случаев допустимая запылённость — не свыше трёх пылинок размером менее 1 мкм в 1 м3. О жёсткости требований к геометрической точности изготовления электронных приборов свидетельствуют, например, следующие цифры: в ряде случаев относительная погрешность размеров не должна превышать 0,001%; абсолютная точность размеров и взаимного расположения элементов интегральных схем достигает сотых долей мкм. Это требует создания новых, более совершенных методов обработки материалов, новых средств и методов контроля. Характерным для технологии в Э. является необходимость широкого использования новейших методов и средств: электроннолучевой, ультразвуковой и лазерной обработки и сварки, фотолитографии, электронной и рентгеновской литографии, электроискровой обработки, ионной имплантации, плазмохимии, молекулярной эпитаксии, электронной микроскопии, вакуумных установок, обеспечивающих давление остаточных газов до 10-13мм рт. ст. Сложность многих технологических процессов требует исключения субъективного влияния человека на процесс, что обусловливает актуальность проблемы автоматизации производства электронных приборов с применением ЭВМ наряду с общими задачами повышения производительности труда. Эти и другие специфические особенности технологии в Э. привели к необходимости создания нового направления в машиностроении — электронного машиностроения.

  Перспективы развития Э. Одна из основных проблем, стоящих перед Э., связана с требованием увеличения количества обрабатываемой информации вычислительными и управляющими электронными системами с одновременным уменьшением их габаритов и потребляемой энергии. Эта проблема решается путём создания полупроводниковых интегральных схем, обеспечивающих время переключения до 10-11сек; увеличения степени интеграции на одном кристалле до миллиона транзисторов размером 1—2 мкм; использования в интегральных схемах устройств оптической связи и оптоэлектронных преобразователей (см. Оптоэлектроника ), сверхпроводников ; разработки запоминающих устройств ёмкостью несколько мегабит на одном кристалле; применения лазерной и электроннолучевой коммутации; расширения функциональных возможностей интегральных схем (например, переход от микропроцессора к микроЭВМ на одном кристалле); перехода от двумерной (планарной) технологии интегральных схем к трёхмерной (объёмной) и использования сочетания различных свойств твёрдого тела в одном устройстве; разработки и реализации принципов и средств стереоскопического телевидения , обладающего большей информативностью по сравнению с обычным; создания электронных приборов, работающих в диапазоне миллиметровых и субмиллиметровых волн, для широкополосных (более эффективных) систем передачи информации, а также приборов для линий оптической связи; разработки мощных, с высоким кпд, приборов СВЧ и лазеров для энергетического воздействия на вещество и направленной передачи энергии (например, из космоса). Одна из тенденций развития Э. — проникновение её методов и средств в биологию (для изучения клеток и структуры живого организма и воздействия на него) и медицину (для диагностики, терапии, хирургии). По мере развития Э. и совершенствования технологии производства электронных приборов расширяются области использования достижения Э. во всех сферах жизни и деятельности людей, возрастает роль Э. в ускорении научно-технического прогресса.

  А. И. Шокин.

Электронная автоматическая телефонная станция

Электро'нная автомати'ческая телефо'нная ста'нция (ЭАТС), телефонная станция , в которой коммутация линий и каналов, а также управление процессами коммутации осуществляются устройствами на электронных элементах (полупроводниковых приборах , интегральных схемах , ферритах и т. д.). Принципы построения коммутационных устройств ЭАТС определяются главным образом методами разделения каналов — пространственного, частотного, временного разделения (коммутации); при этом методы частотного и временного разделения аналогичны методам уплотнения линий связи (см. Линии связи уплотнение ). Распространение (1978) получили ЭАТС, в которых используются пространственная или (и) временная коммутация линий и каналов (см. Электросвязь ). К ЭЛТС с пространственной коммутацией относятся станции, выполненные на основе т. н. пространственных полупроводниковых соединителей. Пространственная коммутация используется в основном в ЭАТС малой и средней ёмкости. В ЭАТС с временной коммутацией линия связи или групповой тракт связи посредством электронных коммутаторов в определённые моменты предоставляется для передачи импульсных сигналов каждого канала. В таких ЭАТС для разделения сообщений применяют импульсную модуляцию колебаний : в оконечных ЭАТС малой и средней ёмкости — амплитудно-импульсную и широтно-импульсную; в транзитных ЭАТС большой и средней ёмкости — импульсно-кодовую (ИКМ). Наиболее перспективны системы с ИКМ, при использовании которых открывается возможность объединения (интеграции) процессов передачи и коммутации и создания на этой основе интегральных цифровых систем связи. В англоязычной научно-технической литературе к ЭАТС с пространственной коммутацией относят также механоэлектронные автоматические телефонные станции (построенные на миниатюрных многократных координатных соединителях ) и квазиэлектронные автоматические телефонные станции .

  Лит.: Лутов М. Ф., Электронные АТС, в кн.: Радиотехника и электросвязь, М., 1966 (ВИНИТИ. Итоги науки и техники); Прагер Э., Трнка Я., Электронные телефонные станции, пер. с чешск., М., 1976.

  М. Ф. Лутов.

Электронная вычислительная машина

Электро'нная вычисли'тельная маши'на (ЭВМ), вычислительная машина , основные функциональные элементы которой (логические, запоминающие, индикационные и т. д.) выполнены на электронных лампах или полупроводниковых приборах, либо на интегральных микросхемах и т. д. Первые ЭВМ, как аналоговые (см. Аналоговая вычислительная машина ), так и цифровые (см. Цифровая вычислительная машина ), появились в середине 40-х гг. 20 в. Благодаря преимуществам ЭВМ по сравнению с вычислительными машинами других типов (высокое быстродействие, компактность, надёжность, автоматизация вычислительного процесса и др.) они получили преимущественное использование при научно-технических расчётах, обработке информации (в том числе планировании, учёте, прогнозировании и др.), автоматическом управлении. См. также Вычислительная техника , Кибернетика техническая , Сеть вычислительных центров , Управления автоматизированная система , Управление в технике.