Лит.: Добрецов Л. Н., Гомоюнова М. В., Эмиссионная электроника, М., 1966; Бугаев С. П., Воронцов-Вельяминов П. Н., Искольдский А. М., Месяц С, А., Проскуровский Д. И., Фурсей Г. Н., Явление взрывной электронной эмиссии, в сборнике: Открытия в СССР 1976 года, М., 1977.

  Т. М. Лифшиц.

Электронноакустический преобразователь

Электронноакусти'ческий преобразова'тель, устройство для преобразования акустических сигналов в электрические. Э. п. представляет собой электроннолучевой прибор с экраном в виде металлического диска с отверстиями, в которые впаяны тонкие остеклованные (для изоляции от диска) проволочки. Внутренняя поверхность диска отшлифована и покрыта слоем диэлектрика с большим коэффициентом вторичной эмиссии. С внешней стороны диска проволочки электрически соединены с элементами матрицы из пьезоэлектрического материала. Под действием акустической волны на элементах матрицы возникают электрические потенциалы, которые по проволочкам передаются на внутреннюю поверхность диска (экрана), при этом распределение зарядов на слое диэлектрика соответствует распределению амплитуд звукового давления в плоскости матрицы. Электронный луч, обегая поочерёдно все участки экрана (так же, как в передающей телевизионной трубке), «считывает» электронное изображение акустического поля и преобразует его в последовательность электрических сигналов.

  Э. п. используют в устройствах ультразвуковой дефектоскопии и подводного звуковидения, в приборах медицинской диагностики, как быстродействующие электронные коммутаторы и т. д.

  Лит.: Грасюк Д. С. [и др.], Ультразвуковой интроскоп с новым электронно-акустическим преобразователем «У-55», «Акустический журнал», 1965, т. 11, в. 4; Прохоров В. Г., Семенов С. П., О построении систем акустической голографии, в сборнике: Современное состояние и перспективы развития голографии, Л., 1974.

  В. Д. Свет.

Электронно-дырочная жидкость

Электро'нно-ды'рочная жи'дкость, конденсированное состояние неравновесной электронно-дырочной плазмы в полупроводниках (см. Плазма твёрдых тел ). Э.-д. ж. образуется, когда концентрация электронов и дырок (свободных или связанных в экситоны ) превышает некоторое, зависящее от температуры критическое значение nkp. Эта концентрация легко достигается с помощью инжекции носителей, освещения полупроводника и т. п. При достижении nkp система неравновесных носителей тока претерпевает фазовый переход, подобный переходу газ — жидкость, в результате которого она расслаивается на две фазы: капли относительно плотной Э.-д. ж., окруженные газом экситонов, и свободных носителей. При этом плотность и кристаллическая структура полупроводника практически не затрагиваются. В отличие от обычных жидкостей, в Э.-д. ж. отсутствуют тяжёлые частицы (ионы, атомные ядра). Поэтому Э.-д. ж. обладает сильно выраженными квантовыми свойствами: она не может кристаллизоваться, а остаётся жидкостью вплоть до самых низких температур (см. Квантовая жидкость ); она не может быть жидкостью молекулярного типа, т. е. состоять из экситонов или экситонных молекул, а состоит из квазисвободных электронов и дырок, т. е. подобна жидкому металлу .

  Кулоновское взаимодействие, связывающее частицы в Э.-д. ж., ослаблено диэлектрической проницаемостью кристалла. Поэтому по сравнению с обычными жидкостями энергии связи частиц E и их концентрации по в Э.-д. ж. весьма малы (E ~ 10-2 — 10-1эв, п ~ 1017 — 1019см-3 ). Область температур Т, при которых возможно существование Э.-д. ж., по порядку величины определяется соотношением: Т ³ (0,1 E /к ) ~ 10—100 К (к — Больцмана постоянная ).

  Диаметр капель обычно ~ 1—10 мкм, однако удаётся наблюдать капли с диаметрами до 1 мм. Капли можно ускорять до скоростей порядка скорости звука в кристалле, т. е. это подвижные области высокой металлической проводимости внутри практически не проводящего (при низких Т) кристалла. Э.-д. ж. можно рассматривать как устойчивые макроскопические «сгустки» введённой в кристалл энергии возбуждения. Эта энергия выделяется в процессе рекомбинации электронов и дырок частично в виде электромагнитного излучения (излучательные переходы), так что Э.-д. ж. являются интенсивными источниками света. Э.-д. ж. наиболее полно изучена в Ge и Si, однако есть указания на её существование и в других полупроводниках.

  Лит. см. при ст. Экситон .

  Л. В. Келдыш.

Электронно-дырочный переход

Электро'нно-ды'рочный перехо'д (p —n -переход), область полупроводника, в которой имеет место пространственное изменение типа проводимости (от электронной n к дырочной p ). Поскольку в р -области Э.-д. п. концентрация дырок гораздо выше, чем в n -области, дырки из n -области стремятся диффундировать в электронную область. Электроны диффундируют в р -область. Однако после ухода дырок в n -области остаются отрицательно заряженные акцепторные атомы, а после ухода электронов в n -области — положительно заряженные донорные атомы. Т. к. акцепторные и донорные атомы неподвижны, то в области Э.-л. п. образуется двойной слой пространственного заряда — отрицательные заряды в р -области и положительные заряды в n -области (рис. 1 ). Возникающее при этом контактное электрическое поле по величине и направлению таково, что оно противодействует диффузии свободных носителей тока через Э.-д. п.; в условиях теплового равновесия при отсутствии внешнего электрического напряжения полный ток через Э.-д. п. равен нулю. Т. о., в Э.-д. п. существует динамическое равновесие, при котором небольшой ток, создаваемый неосновными носителями (электронами в р -области и дырками в n -области), течёт к Э.-д. п. и проходит через него под действием контактного поля, а равный по величине ток, создаваемый диффузией основных носителей (электронами в n -области и дырками в р -области), протекает через Э.-д. п. в обратном направлении. При этом основным носителям приходится преодолевать контактное поле (потенциальный барьер ). Разность потенциалов, возникающая между p- и n -областями из-за наличия контактного поля (контактная разность потенциалов или высота потенциального барьера), обычно составляет десятые доли вольта.

  Внешнее электрическое поле изменяет высоту потенциального барьера и нарушает равновесие потоков носителей тока через него. Если положит. потенциал приложен к р -области, то внешнее поле направлено против контактного, т. е. потенциальный барьер понижается (прямое смещение). В этом случае с ростом приложенного напряжения экспоненциально возрастает число основных носителей, способных преодолеть потенциальный барьер. Концентрация неосновных носителей по обе стороны Э.-д. п. увеличивается (инжекция неосновных носителей), одновременно в р- и n -области через контакты входят равные количества основных носителей, вызывающих нейтрализацию зарядов инжектированных носителей. В результате возрастает скорость рекомбинации и появляется отличный от нуля ток через Э.-д. п. При повышении приложенного напряжения этот ток экспоненциально возрастает. Наоборот, приложение положит, потенциала к и-области (обратное смещение) приводит к повышению потенциального барьера. При этом диффузия основных носителей через Э.-д. п. становится пренебрежимо малой.

  В то же время потоки неосновных носителей не изменяются, поскольку для них барьера не существует. Потоки неосновных носителей определяются скоростью тепловой генерации электронно-дырочных пар. Эти пары диффундируют к барьеру и разделяются его полем, в результате чего через Э.-д. п. течёт ток Is (ток насыщения), который обычно мал и почти не зависит от приложенного напряжения. Т. о., зависимость тока 1 через Э.-д. п. от приложенного напряжения U (вольтамперная характеристика) обладает резко выраженной нелинейностью (рис. 2 ). При изменении знака напряжения ток через Э.-д. п. может меняться в 105 —106 раз. Благодаря этому Э.-д. п. является вентильным устройством, пригодным для выпрямления переменных токов (см. Полупроводниковый диод ). Зависимость сопротивления Э.-д. п. от U позволяет использовать Э.-д. п. в качестве регулируемого сопротивления (варистора ).