где V1 потенциал первого  участка Э. п. и пространства перед ним, V2 — потенциал последнего участка призмы и пространства за ним. Как известно, потенциал электростатический можно определять с точностью до произвольной постоянной, принимая его равным нулю там, где это диктуется соображениями удобства. В данном случае, как и в большинстве задач электронной и ионной оптики, потенциал принимают равным нулю там, где равна нулю скорость частиц. При этом условии электроннооптический преломления показатель nэ =

Большая Советская Энциклопедия (ЭЛ) - i-images-113607513.png
. Т. о., отклонение пучка заряженных частиц в телескопической системе подчиняется закону, совершенно аналогичному Снелля закону преломления в световой оптике. Для увеличения дисперсии применяют сложную Э. п., состоящую из двух телескопических систем, расположенных под углом друг к другу. Такие Э. п. служат диспергирующими элементами в электронных спектрометрах.

  В магнитной Э. п. с «двухмерным» полем роль цилиндрических линз играют поля рассеяния на краях магнитных полюсов. При определённом угле падения пучка на призму эти поля образуют телескопическую систему (рис. 2 ).

  Лит.: Арцимович Л. А., Лукьянов С. Ю., Движение заряженных частиц в электрических и магнитных полях, М., 1972; Кельман В. М., Явор С. Я., Электронная оптика, 3 изд., Л., 1968; Призменные бета-спектрометры и их применение, Вильнюс, 1971; Применение призменных бета-спектрометров, Вильнюс, 1974.

  В. М. Кельман, И. В. Родникова.

Большая Советская Энциклопедия (ЭЛ) - i009-001-219782168.jpg

Рис. 1. Телескопическая система, состоящая из двух цилиндрических иммерсионных электростатических линз: 1, 2 - электроды, составляющие первую по ходу пучка цилиндрическую линзу, 2, 3 - вторую линзу; ломаные линии со стрелками - проекции траекторий заряженных частиц на плоскости yz и ху; А В- линейный фокус. (Название «цилиндрический» применительно к электронным линзам указывает на то, что они могут действовать на электронный пучок так же, как цилиндрическая светооптическая линза на световой пучок.)

Большая Советская Энциклопедия (ЭЛ) - i010-001-271937989.jpg

Рис. 2. Отклонение пучка заряженных частиц магнитной призмой: 1 — полюса магнита призмы; 2 — пучок заряженных частиц; АВ — линейный фокус.

Электронные теории в органической химии

Электро'нные тео'рии в органи'ческой хи'мии, теории, рассматривающие строение, физические свойства и реакционную способность органических соединений на основе представлений о распределении электронной плотности в атомах и молекулах, а также о смещениях её при химических реакциях.

  Э. т. возникли на рубеже 19 и 20 вв. вскоре после открытия электрона. В первых Э. т. представления о существовании электростатических связей в неорганических соединениях были механически перенесены на неполярные органические соединения. Эти теории не смогли объяснить многие экспериментальные факты органической химии и потому уступили место теориям, базирующимся на представлениях о существовании ковалентных связей (немецкий учёный И. Штарк, 1908—15, Г. Льюис , 1916—23). Образование ковалентной связи, осуществляемое, по Льюису, общей для двух атомов электронной парой (дублетом), впоследствии было интерпретировано в рамках квантовой механики как эффект перекрывания электронных плотностей взаимодействующих атомов (см. Химическая связь ,Валентность ).

  Концепция ковалентной связи оказалась наиболее плодотворной в органической химии. Созданными в 20—30-е гг. на её основе Э. т. было объяснено строение большого числа органических соединений и установлена зависимость между свойствами этих соединений и их строением, чему способствовали появившиеся в это время квантовохимического представления о различных типах ковалентной связи (см. Сигма- и пи-связи , Семиполярная связь ).

  Наибольшее распространение в этот период получили используемые и поныне Э. т., развивавшиеся английскими химиками Т. Лоури, Р. Робинсоном , К. Инголдом , а также Л. Полингом . Введённые ими в рамках так называемой теории электронных смещений представления о статическом и динамическом смещениях электронных пар (индуктивный, мезомерный, индуктомерный и электромерный эффекты) широко используются для объяснения, а в некоторых случаях и для предсказания свойств и реакционной способности разнообразных органический соединений. Английские химики предложили также классификацию органических реакций в соответствии с механизмом электронных смещений и механизмом электростатической ориентации реагентов при их взаимодействии — нуклеофильным, электрофильным и радикальным (см. Органическая химия , Сопряжение связей , Мезомерия , Нуклеофильные и электрофильные реагенты ). Теория электронных смещений позволила объяснить выравнивание связей в цепях сопряжения (в частности, равноценность связей в бензоле), передачу влияния заместителя по системе сопряжённых связей, порядок замещения в ароматическом кольце при наличии в нём заместителя (см. Ароматические соединения , Ориентации правила ) и многие другие закономерности, экспериментально установленные в органической химии, например Марковникова правило , Эльтекова правило .

  Э. т. развивались в тесной связи как с классической химического строения теорией, так и с квантовой химией, являющейся основой всех современных электронных теорий.

  Лит. см. при статьях Органическая химия , Химического строения теория , Валентность . Химическая связь .

Электронные часы

Электро'нные часы',часы , в которых источником периодических колебаний обычно служит кварцевый генератор , а отсчёт времени производится по цифровому индикаторному устройству (на жидких кристаллах, светодиодах и т. д.). Преобразование периодических колебаний в дискретные сигналы, управляющие цифровым индикатором, осуществляется электронным устройством, выполненным на интегральных микросхемах (например, в наручных Э. ч.) или полупроводниковых приборах (например, в настольных Э. ч.).

Электронный захват

Электро'нный захва'т, вид радиоактивного распада ядер, при котором ядро захватывает электрон с одной из внутренних оболочек атома (К, L, М и др.) и одновременно испускает нейтрино . При этом ядро с массовым числом A и атомным номером Z превращается в ядро с тем же A и Z меньше на 1: Az + е ® Az-1 + n. Образовавшуюся вакансию в электронной оболочке атома заполняют электроны с других оболочек, в результате чего испускается квант характеристического рентгеновского излучения атома Az-1 или соответствующий электрон (Оже-электрон). Э. з. возможен, если масса (в единицах энергии) атома Az больше массы атома Az-1 на величину, большую энергии связи захватываемого электрона. Если это превышение больше, чем 2 mc2 = 1,02 Мэв (m — масса покоя электрона, с — скорость света), то с Э. з. начинает конкурировать b+ -распад (см. Радиоактивность ).

Электронный микроскоп

Электро'нный микроско'п, прибор для наблюдения и фотографирования многократно (до 106 раз) увеличенного изображения объектов, в котором вместо световых лучей используются пучки электронов, ускоренных до больших энергий (30—100 кэв и более) в условиях глубокого вакуума. Физические основы корпускулярно-лучевых оптических приборов были заложены в 1834 (почти за сто лет до появления Э. м.) У. Р. Гамильтоном , установившим существование аналогии между прохождением световых лучей в оптически неоднородных средах и траекториями частиц в силовых полях. Целесообразность создания Э. м. стала очевидной после выдвижения в 1924 гипотезы о волнах де Бройля , а технические предпосылки были созданы немецким физиком X. Бушем, который исследовал фокусирующие свойства осесимметричных полей и разработал магнитную электронную линзу (1926). В 1928 немецкие учёные М. Кнолль и Э. Руска приступили к созданию первого магнитного просвечивающего Э. м. (ПЭМ) и спустя три года получили изображение объекта, сформированное пучками электронов. В последующие годы (М. фон Арденне, Германия, 1938; В. К. Зворыкин , США, 1942) были построены первые растровые Э. м. (РЭМ), работающие по принципу сканирования (развёртывания), т. е. последовательного от точки к точке перемещения тонкого электронного пучка (зонда) по объекту. К середине 1960-х гг. РЭМ достигли высокого технического совершенства, и с этого времени началось их широкое применение в научных исследованиях. ПЭМ обладают самой высокой разрешающей способностью (PC), превосходя по этому параметру световые микроскопы в несколько тыс. раз. Т. н. предел разрешения, характеризующий способность прибора отобразить раздельно мелкие максимально близко расположенные детали объекта, у ПЭМ составляет 2—3

Большая Советская Энциклопедия (ЭЛ) - i-images-143488604.png
. При благоприятных условиях можно сфотографировать отдельные тяжёлые атомы. При фотографировании периодических структур, таких как атомные плоскости решёток кристаллов, удаётся реализовать разрешение менее 1
Большая Советская Энциклопедия (ЭЛ) - i-images-144289003.png
. Столь высокие разрешения достигаются благодаря чрезвычайно малой длине волны де Бройля электронов (см. Дифракция частиц ). Оптимальным диафрагмированием [см. Диафрагма в электронной (и ионной) оптике] удаётся снизить сферическую аберрацию объектива (влияющую на PC Э. м.) при достаточно малой дифракционной ошибке. Эффективных методов коррекции аберраций в Э. м. (см. Электронная и ионная оптика ) не найдено. Поэтому в ПЭМ магнитные электронные линзы (ЭЛ), обладающие меньшими аберрациями, полностью вытеснили электростатические ЭЛ. Выпускаются ПЭМ различного назначения. Их молено разделить на 3 группы: Э. м. высокого разрешения, упрощённые ПЭМ и Э. м. с повышенным ускоряющим напряжением.