ПЭМ с высокой разрешающей способностью (2—3 Å) — как правило, универсальные приборы многоцелевого назначения. С помощью дополнительных устройств и приставок в них можно наклонять объект в разных плоскостях на большие углы к оптической оси, нагревать, охлаждать, деформировать его, осуществлять рентгеновский структурный анализ , исследования методами электронографии и пр. Ускоряющее электроны напряжение достигает 100—125 кв, регулируется ступенеобразно и отличается высокой стабильностью: за 1—3 мин оно изменяется не более чем на 1—2 миллионные доли от исходного значения. Изображение типичного ПЭМ описываемого типа приведено на рис. 1 . В его оптической системе (колонне) с помощью специальной вакуумной системы создаётся глубокий вакуум (давление до 10—6мм рт. ст. ). Схема оптической системы ПЭМ изображена на рис. 2 . Пучок электронов, источником которых служит накалённый катод, (формируется в электронной пушке и затем дважды фокусируется первым и вторым конденсорами, создающими на объекте электронное «пятно» малых размеров (при регулировке диаметр пятна может меняться от 1 до 20 мкм ). После прохождения сквозь объект часть электронов рассеивается и задерживается апертурной диафрагмой. Нерассеянные электроны проходят через отверстие диафрагмы и фокусируются объективом в предметной плоскости промежуточной линзы. Здесь формируется первое увеличенное изображение. Последующие линзы создают второе, третье и т. д. изображения. Последняя проекционная линза формирует изображение на флуоресцирующем экране, который светится под воздействием электронов. Увеличение Э. м. равно произведению увеличений всех линз. Степень и характер рассеяния электронов неодинаковы в различных точках объекта, т. к. толщина, плотность и химический состав объекта меняются от точки к точке. Соответственно изменяется число электронов, задержанных апертурной диафрагмой после прохождения различных точек объекта, а следовательно, и плотность тока на изображении, которая преобразуется в световой контраст на экране. Под экраном располагается магазин с фотопластинками. При фотографировании экран убирается, и электроны воздействуют на фотоэмульсионный слой. Изображение фокусируется плавным изменением тока, возбуждающего магнитное поле объектива. Токи др. линз регулируют для изменения увеличения Э. м.
Упрощённые ПЭМ предназначены для исследований, в которых не требуется высокая PC. Они более просты по конструкции (включающей 1 конденсор и 2—3 линзы для увеличения изображения объекта), их отличают меньшее (обычно 60—80 кв ) ускоряющее напряжение и более низкая его стабильность. PC этих приборов — от 6 до 15. Другие применения — предварительный просмотр объектов, рутинные исследования, учебные цели. Толщина объекта, которую можно «просветить» электронным пучком, зависит от ускоряющего напряжения. В 100-кв Э. м. изучают объекты толщиной от 10 до нескольких тыс. Å.
ПЭМ с повышенным ускоряющим напряжением (до 200 кв ) предназначены для исследования более толстых объектов (в 2—3 раза толще), чем обычные ПЭМ. Их разрешающая способность достигает 3—5 Å. Эти приборы отличаются конструкцией электронной пушки: в ней для обеспечения электрической прочности и стабильности имеются два анода, на один из которых подаётся промежуточный потенциал, составляющий половину ускоряющего напряжения. Магнитодвижущая сила линз больше, чем в 100-кв ПЭМ, а сами линзы имеют увеличенные габариты и вес.
Сверхвысоковольтные Э. м. (СВЭМ) — крупногабаритные приборы (рис. 3 ) высотой от 5 до 15 м, с ускоряющим напряжением 0,5—0,65; 1—1,5 и 3 Мв . Для них строят специальные помещения. СВЭМ предназначены для исследования объектов толщиной до 1—10 мкм (104— 106 Å). Электроны ускоряются в электростатическом ускорителе (т. н. ускорителе прямого действия), расположенном в баке, заполненном электроизоляционным газом под давлением. В том же или в дополнительном баке находится высоковольтный стабилизированный источник питания. Ведутся работы по созданию СВЭМ с линейным ускорителем, в котором электроны ускоряются до энергий 5—10 Мэв. При изучении тонких объектов PC СВЭМ ниже, чем у ПЭМ. В случае толстых объектов PC СВЭМ в 10—20 раз превосходит PC 100-кв ПЭМ.
Растровые Э. м. (РЭМ) с накаливаемым катодом предназначены для исследования массивных объектов с разрешением от 70 до 200 Å. Ускоряющее напряжение в РЭМ можно регулировать в пределах от 1 до 30—50 кв .
Устройство растрового Э. м. показано на рис. 4 . При помощи 2 или 3 ЭЛ на поверхность образца фокусируется узкий электронный зонд. Магнитные отклоняющие катушки развёртывают зонд по заданной площади на объекте. При взаимодействии электронов зонда с объектом возникает несколько видов излучений (рис. 5 ) — вторичные и отражённые электроны; электроны, прошедшие сквозь объект (если он тонкий); рентгеновское тормозное излучение и характеристическое излучение; световое излучение и т. д.
Любое из этих излучений может регистрироваться соответствующим коллектором, содержащим датчик, преобразующий излучение в электрические сигналы, которые после усиления подаются на электроннолучевую трубку (ЭЛТ) и модулируют её пучок. Развёртка пучка ЭЛТ производится синхронно с развёрткой электронного зонда в РЭМ, и на экране ЭЛТ наблюдается увеличенное изображение объекта. Увеличение равно отношению высоты кадра на экране ЭЛТ к ширине сканируемой поверхности объекта. Фотографируют изображение непосредственно с экрана ЭЛТ. Основным достоинством РЭМ является высокая информативность прибора, обусловленная возможностью наблюдать изображение, используя сигналы различных датчиков. С помощью РЭМ можно исследовать микрорельеф, распределение химического состава по объекту, р—n-переходы, производить рентгеноструктурный анализ и многое другое. Образец обычно исследуется без предварительной подготовки. РЭМ находит применение и в технологических процессах (контроль дефектов микросхем и пр.). Высокая для РЭМ PC реализуется при формировании изображения с использованием вторичных электронов. Она определяется диаметром зоны, из которой эти электроны эмиттируются. Размер зоны в свою очередь зависит от диаметра зонда, свойств объекта, скорости электронов первичного пучка и т. д. При большой глубине проникновения первичных электронов вторичные процессы, развивающиеся во всех направлениях, увеличивают диаметр зоны и PC падает. Детектор вторичных электронов состоит из фотоэлектронного умножителя (ФЭУ) и электронно-фотонного преобразователя, основным элементом которого является сцинтиллятор с двумя электродами — вытягивающим в виде сетки, находящейся под положительным потенциалом (до нескольких сотен в ), и ускоряющим; последний сообщает захваченным вторичным электронам энергию, необходимую для возбуждения сцинтиллятора. К ускоряющему электроду приложено напряжение около 10 кв; обычно он представляет собой алюминиевое покрытие на поверхности сцинтиллятора. Число вспышек сцинтиллятора пропорционально числу вторичных электронов, выбитых в данной точке объекта. После усиления в ФЭУ и в видеоусилителе сигнал модулирует пучок ЭЛТ. Величина сигнала зависит от топографии образца, наличия локальных электрических и магнитных микрополей, величины коэффициента вторичной электронной эмиссии , который в свою очередь зависит от химического состава образца в данной точке. Отражённые электроны регистрируются полупроводниковым (кремниевым) детектором. Контраст изображения обусловлен зависимостью коэффициента отражения от угла падения первичного пучка и атомного номера вещества. Разрешение изображения, получаемого «в отражённых электронах», ниже, чем получаемого с помощью вторичных электронов (иногда на порядок величины). Из-за прямолинейности полёта электронов к коллектору информация об отдельных участках, от которых нет прямого пути к коллектору, теряется (возникают тени). Характеристическое рентгеновское излучение выделяется или рентгеновским кристаллическим спектрометром или энергодисперсным датчиком — полупроводниковым детектором (обычно из чистого кремния, легированного литием). В первом случае рентгеновские кванты после отражения кристаллом спектрометра регистрируются газовым пропорциональным счётчиком , а во втором — сигнал, снимаемый с полупроводникового детектора, усиливается малошумящим усилителем (который для снижения шума охлаждается жидким азотом) и последующей системой усиления. Сигнал от кристаллического спектрометра модулирует пучок ЭЛТ, и на экране возникает картина распределения того или иного химического элемента по поверхности объекта. На РЭМ производят также локальный рентгеновский количественный анализ. Энергодисперсный детектор регистрирует все элементы от Na до U при высокой чувствительности. Кристаллический спектрометр с помощью набора кристаллов с различными межплоскостными расстояниями (см. Брэгга — Вульфа условие ) перекрывает диапазон от Be до U. Существенный недостаток РЭМ — большая длительность процесса «снятия» информации при исследовании объектов. Сравнительно высокую PC можно получить, используя электронный зонд достаточно малого диаметра. Но при этом уменьшается сила тока зонда, вследствие чего резко возрастает влияние дробового эффекта , снижающего отношение полезного сигнала к шуму. Чтобы отношение «сигнал/шум» не падало ниже заданного уровня, необходимо замедлить скорость сканирования для накопления в каждой точке объекта достаточно большого числа первичных электронов (и соответствующего количества вторичных). В результате высокая PC реализуется лишь при малых скоростях развёртки. Иногда один кадр формируется в течение 10—15 мин.