Природа принадлежит к тому классу причин, которые действуют ради чего-нибудь. Это ведёт к рассмотрению того взгляда, что природа производит по необходимости, без цели, в связи с чем Аристотель рассуждает о выживании наиболее приспособленных в той форме, как учил Эмпедокл. Это не может быть правильным, говорит он, потому что вещи происходят определёнными путями, и, когда ряд завершён, оказывается, что все предшествующие шаги были сделаны ради этого. Те вещи «естественны», которые, «двигаясь непрерывно под воздействием какого-то начала в них самих, доходят до известной цели» (199b). Вся эта концепция «природы», хотя она вполне может показаться весьма подходящей для объяснения роста животных и растений, стала, в конечном результате, огромным препятствием для прогресса науки и источником многого того, что было плохого в этике. На эту последнюю она ещё оказывает вредное влияние.

Движение, говорят нам, — это реализация того, что существует в потенции. Такое мнение, помимо других недостатков, несовместимо с относительностью перемещения. Когда А движется относительно В, то В движется относительно А, и бессмысленно утверждать, что одно из двух находится в движении, а другое — в состоянии покоя. Когда собака хватает кость, с точки зрения здравого смысла кажется, что собака находится в состоянии движения, в то время как кость пребывает в состоянии покоя (пока она не схвачена), и что это движение имеет цель, а именно осуществить, реализовать «природу» собаки. И вдруг оказывается, что этот взгляд неприменим к неживой материи, что для научной физики любая концепция «цели» бессмысленна и что, строго научно, никакое движение не может рассматриваться иначе, как относительное.

Аристотель отрицает пустоту, мысль о существовании которой защищали Левкипп и Демокрит. Затем он переходит к весьма любопытному рассуждению о времени. Можно было бы, говорит он, утверждать, что время не существует, поскольку оно составлено из прошедшего и будущего, из которых одно уже не существует, а другое ещё не существует. Однако он отвергает эту точку зрения. Время, говорит он, — это движение, которое допускает процесс счёта (почему он считает процесс счёта существенным, не ясно). Законно спросить, продолжает он, могло ли бы время существовать без души, поскольку ничего нельзя сосчитать, если некому считать, а время включает процесс счёта. Он, по-видимому, представляет себе время, как какое-то количество часов, или дней, или лет. Некоторые вещи, добавляет он, вечны в том смысле, что они находятся вне времени; надо полагать, что он имеет в виду такие вещи, как числа.

Движение было всегда и всегда будет, ибо не может быть времени без движения, и все, за исключением Платона, согласны в том, что время никем не создано. В этом пункте христианские последователи Аристотеля были вынуждены отмежеваться от него, поскольку Библия говорит, что Вселенная имела начало.

Сочинение Аристотеля «Физика» кончается аргументом в пользу неподвижности источника движения, который мы рассматривали в связи с его другим сочинением — «Метафизика». Имеется один неподвижный двигатель: он непосредственно вызывает круговое движение. Круговое движение является первичным, и только оно одно может быть непрерывным и бесконечным. Первый двигатель не имеет частей или размеров и находится на окружности мира.

Придя к этому заключению, мы переходим к небесам.

Трактат «О небе» выдвигает приятную и простую теорию. Вещи, находящиеся ниже Луны, претерпевают зарождение и распад; всё, находящееся выше Луны, не рождено и неуничтожимо. Земля, которая является сферичной, находится в центре Вселенной. В подлунной сфере всё составлено из четырёх элементов: земли, воды, воздуха и огня; но существует пятый элемент, из которого составлены небесные тела. Природное движение земных элементов прямолинейно, а движение пятого элемента круговое. Небеса полностью сферичны, и верхние их части более божественны, чем нижние. Звёзды и планеты составлены не из огня, а из пятого элемента; их движение происходит благодаря движению сфер, к которым они прикреплены. (Всё это выражено в поэтической форме в «Рае» Данте.)

Четыре земных элемента не вечны, а порождаются один от другого; огонь абсолютно лёгок в том смысле, что его естественное движение направлено вверх; земля абсолютно тяжела. Воздух относительно лёгок, а вода относительно тяжела.

Эта теория породила много трудностей для последующих веков. Кометы, которые были признаны уничтожимыми, должны были быть отнесены к подлунной сфере, но в XVII столетии было открыто, что кометы описывают орбиты вокруг Солнца и очень редко находятся на таком же расстоянии от Земли, как Луна. Поскольку природное движение земных тел прямолинейно, утверждалось, что метательный снаряд, направленный по горизонтали, будет в течение некоторого времени двигаться горизонтально, а затем внезапно начнёт падать вертикально. Открытие, сделанное Галилеем, показавшим, что метательный снаряд описывает параболу, шокировало его коллег — последователей Аристотеля. Копернику, Кеплеру и Галилею пришлось бороться и с Аристотелем, так же как с Библией, чтобы утвердить тот взгляд, что Земля не является центром Вселенной, а вращается вокруг своей оси в течение суток и обращается вокруг Солнца в течение года.

Но перейдём к более общим вопросам. Физика Аристотеля несовместима с «первым законом движения» Ньютона, первоначально сформулированным Галилеем. Этот закон утверждает, что каждое тело, предоставленное самому себе, будет, если оно уже находится в движении, продолжать двигаться по прямой линии с постоянной скоростью. Таким образом, внешние причины требуются не для того, чтобы объяснить движение, но чтобы объяснить изменение движения — его скорости или направления. Круговое движение, которое Аристотель считал «естественным» для небесных тел, включало постоянное изменение направления движения и поэтому требовало силы, направленной к центру круга, как в законе тяготения Ньютона.

И, наконец, пришлось отказаться от того мнения, что небесные тела вечны и неуничтожимы. Солнце и звёзды существуют долго, но не вечно. Они рождены из туманности и в конце концов либо взрываются, либо, остывая, гибнут. Ничто в видимом мире не свободно от изменения и распада; вера Аристотеля в противное, хотя она и была принята средневековыми христианами, является продуктом языческого поклонения Солнцу, Луне и планетам.

Глава XXIV. РАННЯЯ ГРЕЧЕСКАЯ МАТЕМАТИКА И АСТРОНОМИЯ

В этой главе я касаюсь математики не самой по себе, а в её связи с греческой философией — связи, которая была очень тесной, особенно у Платона. В математике и астрономии превосходство греков проявилось более определённо, чем где-либо ещё. То, что они сделали в искусстве, литературе и философии, может быть оценено в зависимости от вкуса выше или ниже, но то, чего они достигли в геометрии, абсолютно бесспорно. Кое-что они унаследовали от Египта, кое-что, гораздо меньше, — от Вавилонии; что касается математики, то они получили из этих источников главным образом простые приёмы, а в астрономии — записи наблюдений за очень долгий период. Искусство математического доказательства почти целиком греческого происхождения.

Сохранилось много интересных рассказов (вероятно, вымышленных) о том, какими практическими проблемами стимулировались математические исследования. Самый ранний и простой рассказ связан с Фалесом, которого, когда он был в Египте, царь попросил вычислить высоту пирамиды. Фалес выждал такое время дня, когда его тень по величине сравнялась с его ростом, затем он измерил тень пирамиды, которая, конечно, также была равна её высоте. Говорят, что законы перспективы впервые были изучены геометром Агафархом, для того чтобы написать декорации к пьесам Эсхила. Задача определить расстояние до корабля, находящегося в море, которую, как говорят, изучал Фалес, была правильно решена уже в очень отдалённые времена. Одной из важных задач, которая занимала греческих геометров, было удвоение кубического объёма. Она возникла, как говорят, у жрецов одного храма, которым оракул возвестил, что бог хочет иметь свою статую вдвое большего размера, чем та, которая у них была. Сначала они решили попросту удвоить все размеры статуи, но затем поняли, что новая статуя получится в восемь раз больше подлинника, а это повлечёт за собой большие расходы, чем того требовал бог. Тогда они послали делегацию к Платону с просьбой, не может ли кто-нибудь из Академии решить их проблему. Геометры занялись ею и проработали над ней целые столетия, дав попутно множество прекрасных произведений. Задача эта, конечно, сводится к извлечению кубического корня из 2.