(Ех) Э (х),

где через х обозначены явления:

Э - присущее таким явлениям свойство экстрасенсорности;

(Ex) - квантор существования.

С помощью квантора общности можно выражать эмпирические и теоретические законы, обобщения о связи между явлениями, универсальные гипотезы и другие общие высказывания. Например, закон теплового расширения тел символически можно представить в виде формулы:

(х) (Т(х) → P(х)),

где (х) - квантор общности;

Т(х) - температура тела;

Р(х) - его расширение;

→ знак импликации.

Квантор существования относится только к определенной части объектов из данного универсума рассуждений. Поэтому, например, он используется для символической записи статистических законов, которые утверждают, что свойство или отношение относится только для характеристики определенной части изучаемых объектов.

Введение кванторов дает возможность прежде всего превращать предикаты в определенные высказывания. Предикаты сами по себе не являются ни истинными, ни ложными. Они становятся таковыми, если вместо переменных либо подставляются конкретные высказывания, либо, если они связываются кванторами, квантифицируются. На этом основании вводится разделение переменных на связанные и свободные.

Связанными называются переменные, подпадающие под действие знаков кванторов общности или существования. Например, формулы (х) А (х) и (х) (Р (х) → Q(x)) содержат переменную х. В первой формуле квантор общности стоит непосредственно перед предикатом А(х), вовторой - квантор распространяет свое действие на переменные, входящие в предыдущий и последующий члены импликации. Аналогично этому квантор существования может относиться как к отдельному предикату, так и к их комбинации, образованной с помощью логических операций отрицания, конъюнкции, дизъюнкции и др.

Свободная переменная не подпадает под действие знаков кванторов, поэтому она характеризует предикат или пропозициональную функцию, а не высказывание.

С помощью комбинации кванторов можно выразить на символическом языке логики достаточно сложные предложения естественного языка. При этом высказывания, где речь идет о существовании объектов, удовлетворяющих определенному условию, вводятся с помощью квантора существования. Например, утверждение о существовании радиоактивных элементов записывается с помощью формулы:

(Ex) R(x),

где R обозначает свойство радиоактивности.

Утверждение, что существует опасность для курящего заболеть раком, можно выразить так: (Ех) (К(х) → P(x)), где К обозначает свойство "быть курящим", а Р - "заболеть раком". С известными оговорками то же самое можно было выразить» посредством квантора общности: (х) (К(х) → Р(х)). Но утверждение, что всякий курящий может заболеть раком, было бы некорректным, и поэтому его лучше всего записать с помощью квантора существования, а не общности.

Квантор общности используется для высказываний, в которых утверждается, что определенному предикату А удовлетворяет любой объект из области его значений. В науке, как уже говорилось, квантор общности используется для выражения утверждений универсального характера, которые словесно представляются с помощью таких фраз, как "для всякого", "каждый", "всякий", "любой" и т.п. Путем отрицания квантора общности можно выразить общеотрицательные высказывания, которые в естественном языке вводятся словами "никакой", "ни один", "никто" и т.п.

Разумеется, при переводе на символический язык утверждений естественного языка встречаются определенные трудности, но при этом достигается необходимая точность и однозначность выражения мысли. Нельзя, однако, думать, что формальный язык богаче естественного языка, на котором выражаются не просто смысл, но и разные его оттенки. Речь поэтому может идти только о более точном представлении выражений естественного языка как универсального средства выражения мыслей и обмена ими в процессе общения.

Чаще всего кванторы общности и существования встречаются вместе. Например, чтобы выразить символически утверждение: "Для каждого действительного числа х существует такое число у, что х будет меньше у", обозначим предикат "быть меньше" символом <, известным из математики, и тогда утверждение можно представить формулой: (х) (Еу) < (х, у). Или в более привычной форме: (х) (Еу) (х < у). Это утверждение является истинным высказыванием, поскольку для любого действительного числа х всегда существует другое действительное число, которое будет больше него. Но если мы переставим в нем кванторы, т.е. запишем его в форме: (Еу) (х) (х < у), тогда высказывание станет ложным, ибо в переводе на обычный язык оно означает, что существует число у, которое будет больше любого действительного числа, т.е. существует наибольшее действительное число.

Из самого определения кванторов общности и существования непосредственно следует, что между ними существует определенная связь, которую обычно выражают с помощью следующих законов.

1. Законы перестановки кванторов:

(х) (у) А ~ (у) (х) А;

(Ех) (Еу) А ~ (Еу) (Ех) А;

(Ех) (у) А ~ (у) (Ех) А;

2. Законы отрицания кванторов:

¬ (х) А ~ (Ех) ¬ А;

¬ (Ех) А ~ (х) ¬ А ;

3. Законы взаимовыразимости кванторов:

(х) А ~ ¬ (Ех) ¬ А;

(Ех) А ~ ¬ (х) ¬ А.

Здесь всюду А обозначает любую формулу объектного (предметного) языка. Смысл отрицания кванторов очевиден: если неверно, что для любого х имеет место А, тогда существуют такие х, для которых А не имеет места. Отсюда также следует, что если: любому х присуще А, тогда не существует такого х, которому было бы присуще не-А, что символически представлено в первом законе взаимовыразимости.

4.3. Исчисление предикатов

Построение исчисления предикатов осуществляется, с одной стороны, аналогично построению исчисления высказываний, а с другой - качественно отличается от него.

Сходство и даже связь между обоими исчислениями заключается, во-первых, в том, что значение, которое принимает пропозициональная функция (предикат) из универсума рассуждения, при соответствующих аргументах может быть либо истинным, либо ложным. Во-вторых, все логические связки (операторы), которые рассматривались в предыдущей главе - отрицание, дизъюнкция, конъюнкция, импликация - используются и в исчислении предикатов. Следовательно, для определения истинностного значения пропозициональной функции таблица истинности, с которой мы знакомы, может применяться в принципе и здесь, однако на практике такой способ оказывается крайне громоздким и неэффективным.

Прежде всего в исчислении предикатов используются кванторы. Кроме того, для определения истинности пропозициональной функции необходимо установить определенное соответствие между функцией и теми независимыми переменными (аргументами), которые составляют область ее определения (универсум рассуждения). Например, если универсум для отношения х < у составляет множество пар целых положительных чисел, то для определения значения истинности этого отношения необходимо установить соответствие (функцию) между любой парой чисел х и у из универсума и отношением х < у. Очевидно, что при х = 2 и у = 3 высказывание, полученное путем подстановки этих чисел в формулу, будет истинным, а при х=5 и у=3- ложным.

Функция, которая соотносит независимым переменным из ее универсума соответствующее значение истинности или ложности, называют логической, интерпретационной или семантической.

В общем случае, если предикат Р зависит от п индивидных (предметных) переменных, т.е. Р (x1, х2,..., xn), то каждой n-ке переменных из универсума семантическая функция будут соотносить значение "истина" или "ложь". Если n=0, мы получим отдельное, нерасчлененное высказывание (законы исчисления таких высказываний рассматривались в предыдущей главе). Следовательно, исчисление высказываний может быть получено в качестве частного случая исчисления предикатов, а тем самым устанавливается связь между ними. При n = 1, т.е. Р(х), предикат является свойством, при n = 2, 3, 4 получаем бинарные, тернарные и тому подобные отношения.