Итак, я привел пять независимых примеров вырождения генов коротковолновых опсинов — у латимерии, китообразных, ночной обезьяны, толстого лори и галаго, а также у слепыша. В каждом случае нарушение функции гена коррелировало с изменением образа жизни животного. В каждом случае имел место особый характер повреждения гена опсина SWS. Этот факт, а также то, что эти виды животных принадлежат к различным ветвям эволюционного древа, а их близкие родственники имеют нормальные опсины, говорит о том, что исчезновение функции генов коротковолновых опсинов происходило многократно и независимо на разных этапах эволюции. Таким образом, предположение о том, что ослабление действия естественного отбора на ген ведет к разрушению этого гена, находит убедительное подтверждение. Более того, у всех перечисленных видов животных другие типы опсинов сохраняют свое строение и функцию, что означает, что процесс разрушения генов является крайне избирательным.
Частая утрата гена опсина SWS и связь этого явления с изменением образа жизни говорят о том, что эволюционные изменения часто сопровождаются нарушением функций генов. Теперь давайте обратимся к анализу генома человека, найдем в нем ископаемые гены и посмотрим, что они могут рассказать о наших отличиях от предков.
Не чувствуете, чем пахнет?
Мы увидели немало примеров того, как смена образа жизни приводит к приобретению или к потере генов, отвечающих за зрение. Другие системы восприятия, особенно обоняние, также имеют важнейшее значение для выживания и поведения животных. Достаточно один раз прогуляться в парке с собакой, чтобы понять, в какой степени «видение» мира этими животными определяется их острым нюхом.
Многие другие млекопитающие также обладают прекрасным обонянием, при помощи которого они находят себе пропитание, идентифицируют партнера и потомство, распознают опасность. На протяжении длительного времени механизм улавливания и различения запахов оставался для ученых загадкой. В 1991 году Линда Бак и Ричард Эксел обнаружили семейство генов, кодирующих рецепторы пахучих молекул. Гены обонятельных рецепторов образуют самое крупное семейство генов в геноме млекопитающих. Мышь имеет около 1400 таких генов, а весь ее геном состоит из 25 тыс. генов. Оказалось, что специфичность распознавания запахов связана с тем, что каждая обонятельная нервная клетка имеет лишь один тип (в редких случаях несколько) обонятельного рецептора, настроенного на восприятие конкретной группы пахучих молекул. Восприятие каждого запаха зависит от сочетания рецепторов, участвующих в его распознавании. За разгадку механизма обоняния Бак и Эксел в 2004 г. были удостоены Нобелевской премии в области физиологии и медицины.
Человеческие гены, ответственные за обоняние, изучены очень подробно. Как оказалось, в этой области восприятия человеку по сравнению с мышью похвастаться нечем. Около половины генов обонятельных рецепторов человека стали ископаемыми, не способными производить функциональные рецепторы. Самый разительный контраст между человеком и другими млекопитающими наблюдается в группе рецепторов, кодируемых так называемыми V1r-генами. У мыши обнаружено около 160 функциональных рецепторов V1r, тогда как в геноме человека из 200 генов V1r лишь пять сохранили свою функцию. Очевидно, что наш ассортимент обонятельных рецепторов заметно сократился.
Столь высокое содержание ископаемых генов обонятельных рецепторов говорит о том, что мы больше не полагаемся на обоняние в той же степени, что наши предки. И тут возникает два вопроса. Во-первых, почему мы перестали использовать такую значительную часть наших обонятельных рецепторов? И во-вторых, когда это произошло?
Чтобы найти ответ, стоит проанализировать долю ископаемых генов обонятельных рецепторов у других приматов и млекопитающих. Профессор Иов Гилад и его коллеги из Вейцмановского института в Реховоте и Института эволюционной антропологии Макса Планка в Лейпциге изучили наборы генов обонятельных рецепторов у человекообразных обезьян, обезьян Старого и Нового Света и лемуров и сравнили их с набором мышиных генов. Они обнаружили удивительную корреляцию между долей ископаемых генов обонятельных рецепторов и эволюцией полноценного цветового зрения. У мышей, лемуров и обезьян Нового Света, не имеющих полноценного цветового зрения, ископаемыми являются лишь 18 % генов обонятельных рецепторов. Однако у колобусов и других обезьян Старого Света эта цифра достигает 29 %, а у человекообразных обезьян (орангутана, шимпанзе и гориллы) — 33 %. Наконец, у человека ископаемыми стали 50 % генов обонятельных рецепторов. Таким образом, доля нефункциональных генов обонятельных рецепторов значительно выше у тех видов, которые наделены полноценным цветовым зрением. Это означает, что эволюция трихроматического зрения, которое позволяет этим приматам обнаруживать еду, партнеров и опасность, ослабила их зависимость от способности распознавать запахи. Ослабление отбора генов обонятельных рецепторов у видов, обладающих трихроматическим зрением, привело к разрушению этих генов. Напротив, животные, которые в основном полагаются на обоняние, гораздо лучше сохранили свой набор генов обонятельных рецепторов.
Существуют и другие физические, поведенческие и генетические признаки, свидетельствующие об ослаблении роли обоняния в жизни человека и других приматов. Вомероназальный (или сошниково-носовой) орган — орган восприятия, имеющий форму сигары и расположенный в передней части носовой камеры, — у большинства наземных позвоночных служит для обнаружения феромонов. Однако у человека и высших приматов он в значительной степени редуцирован. Упомянутые мною рецепторы класса V1r играют важнейшую роль в обнаружении феромонов. Таким образом, при выборе партнера мы меньше ориентируемся на феромоны, чем другие млекопитающие, возможно, по той же самой причине — поскольку наши предки для выбора партнера и других функций стали больше полагаться на зрительные сигналы.
Поскольку вомероназальный орган и рецепторы V1r у человека и других высших приматов настолько редуцированы, можно предположить, что дегенерации подверглись и другие механизмы, задействованные в передаче информации от обонятельных органов. И это действительно так. Еще один ген, играющий важную роль в работе вомероназального органа, TRPC2, кодирует белок, регулирующий транспорт ионов в сенсорных клетках. У мышей белок TRPC2 полностью функционален и участвует в реакциях на феромоны. Однако у человека и других высших приматов с трихроматическим зрением и большим количеством редуцированных обонятельных рецепторов ген TRPC2 содержит множество мутаций, нарушивших его функцию.
Тот факт, что гены с разными функциями в обонятельной системе стали ископаемыми генами, — поразительное, исчерпывающее подтверждение предположений о том, что должно происходить в результате ослабления действия отбора на какой-либо признак. Когда целый орган или процесс становится ненужным, гены, участвующие в реализации различных этапов этого процесса, перестают быть объектом отбора и постепенно превращаются в ископаемые. Эволюция вомероназального органа и его отдельных элементов показывает, что целые комплексы генов могут выходить из употребления, распадаться и исчезать. Этот процесс можно наблюдать у некоторых видов, причем иногда он становится массовым. Я приведу два примера из других царств в качестве иллюстрации того, как эволюция убирает то, что больше не используется.
Используй, или потеряешь
Дрожжи и другие грибы играют важную роль в жизни людей. Дрожжи мы используем для производства пива, вина и хлеба, а грибы стали для нас первым источником антибиотиков. Пекарские и пивные дрожжи Saccharomyces cerevisiae давно уже стали излюбленным лабораторным организмом, поскольку их очень легко выращивать. Эксперименты с дрожжами позволили узнать очень многое о росте и делении клеток, об использовании генов и о биохимических основах жизни.