Изотопы, атом, молекула. К. имеет три устойчивых изотопа: 16 О, 17 O и 18 O, среднее содержание которых составляет соответственно 99,759%, 0,037% и 0,204% от общего числа атомов К. на Земле. Резкое преобладание в смеси изотопов наиболее лёгкого из них 16 O связано с тем, что ядро атома 16 O состоит из 8 протонов и 8 нейтронов. А такие ядра, как следует из теории атомного ядра, обладают особой устойчивостью.

  В соответствии с положением К. в периодической системе элементов Менделеева электроны атома К. располагаются на двух оболочках: 2 — на внутренней и 6 — на внешней (конфигурация 1s2 2s2 2p4 см. Атом ). Поскольку внешняя оболочка атома К. не заполнена, а потенциал ионизации и сродство к электрону составляют соответственно 13,61 и 1,46 эв, атом К. в химических соединениях обычно приобретает электроны и имеет отрицательный эффективный заряд. Напротив, крайне редки соединения, в которых электроны отрываются (точнее оттягиваются) от атома К. (таковы, например, F2 O, F2 O2 ). Раньше, исходя единственно из положения К. в периодической системе, атому К. в окислах и в большинстве других соединений приписывали отрицательный заряд (—2). Однако, как показывают экспериментальные данные, ион O2- не существует ни в свободном состоянии, ни в соединениях, и отрицательный эффективный заряд атома К. практически никогда существенно не превышает единицы.

  В обычных условиях молекула К. двухатомна (O2 ); в тихом электрическом разряде образуется также трёхатомная молекула O3 — озон; при высоких давлениях обнаружены в небольших количествах молекулы O4 Электронное строение O2 представляет большой теоретический интерес. В основном состоянии молекула O2 имеет два неспаренных электрона; для неё неприменима «обычная» классическая структурная формула О=О с двумя двухэлектронными связями (см. Валентность ). Исчерпывающее объяснение этого факта дано в рамках теории молекулярных орбиталей. Энергия ионизации молекулы К. (O2 — е®О2+ ) составляет 12,2 эв, а сродство к электрону (O2 + е ® O2- ) — 0,94 эв. Диссоциация молекулярного К. на атомы при обычной температуре ничтожно мала, она становится заметной лишь при 1500 °С; при 5000 °С молекулы К. почти полностью диссоциированы на атомы.

  Физические свойства. К. — бесцветный газ, сгущающийся при —182,9 °С и нормальном давлении в бледно-синюю жидкость, которая при —218,7 °С затвердевает, образуя синие кристаллы. Плотность газообразного К. (при 0°С и нормальном давлении) 1,42897 г/л. Критическая температура К. довольно низка tkpит = —118,84 °С), т. е. ниже, чем у Cl2 , CO2 , SO2 и некоторых других газов; Ркрит = 4,97 Мн/м2 (49,71 am ). Теплопроводность (при 0 °С) 23,86Ч10-3вт/(м· К), т. е. 57Ч10-6кал/сек·см· °С). Молярная теплоёмкость (при 0 °С) в дж/ (моль· К) Ср = 28,9, Cv = 20,5; в кал/ (моль· o C ) Ср = 6,99, Cv = 4,98; Cp /Cv = 1,403. Диэлектрическая проницаемость газообразного К. 1,000547 (0 °С), жидкого 1,491. Вязкость 189 мпуаз (0 °С). К. мало растворим в воде: при 20 °С и 1 am в 1 м3 воды растворяется 0,031 м3 , а при 0 °С — 0,049 м3 К. Хорошими твёрдыми поглотителями К. являются платиновая чернь и активный древесный уголь.

  Химические свойства. К. образует химические соединения со всеми элементами, кроме лёгких инертных газов . Будучи наиболее активным (после фтора) неметаллом, К. взаимодействует с большинством элементов непосредственно;  исключение составляют тяжелые инертные газы, галогены, золото и платина; их соединения с К. получают косвенным путем. Почти все реакции К. с другими веществами — реакции окисления экзотермичны, т. е. сопровождаются выделением энергии. С водородом при обычных температурах К. реагирует крайне медленно, выше 550 °С эта реакция идёт со взрывом: 2Н2 + O2 = 2H2 O. С серой , углеродом , азотом , фосфором К. взаимодействует при обычных условиях очень медленно. При повышении температуры скорость реакции возрастает и при некоторой, характерной для каждого элемента температуре воспламенения начинается горение. Реакция азота с К. благодаря особой прочности молекулы N2 эндотермична и становится заметной лишь выше 1200 °С или в электрическом разряде: N2 +O2 = 2NO. К. активно окисляет почти все металлы, особенно легко — щелочные и щёлочноземельные. Активность взаимодействия металла с К. зависит от многих факторов — состояния поверхности металла, степени измельчения, присутствия примесей (см. Алюминий , Железо , Хром и т.д.).

  В процессе взаимодействия вещества с К. исключительно важна роль воды. Например, даже такой активный металл, как калий , с совершенно лишённым влаги К. не реагирует, но воспламеняется в К. при обычной температуре в присутствии даже ничтожных количеств паров воды. Подсчитано, что в результате коррозии ежегодно теряется до 10% всего производимого металла.

  Окиси некоторых металлов, присоединяя К., образуют перекисные соединения, содержащие 2 или более связанных между собой атомов К. Так, перекиси Na2 O2 и ВаО2 включают перекисный ион O22- , надперекиси NaO2 и KO2 — ион O2- , а озониды NaO3 , KO3 , RbO3 и CsO3 — ион O3- . К. экзотермически взаимодействует со многими сложными веществами. Так, аммиак горит в К. в отсутствии катализаторов, реакция идёт по уравнению: 4NH3 + 3O2 = 2N2 + 6Н2 О. Окисление аммиака кислородом в присутствии катализатора даёт NO (этот процесс используют при получении азотной кислоты ). Особое значение имеет горение углеводородов (природного газа, бензина, керосина) — важнейший источник тепла в быту и промышленности, например СН4 +2О2 = СО2 +2Н2 О. Взаимодействие углеводородов с К. лежит в основе многих важнейших производственных процессов — такова, например, так называемая конверсия метана, проводимая для получения водорода: 2СН42 +2Н2 О=2СО2 +6Н2 (см. Конверсия газов ). Многие органические соединения (углеводороды с двойной или тройной связью, альдегиды, фенолы, а также скипидар, высыхающие масла и др.) энергично присоединяют К. Окисление К. питательных веществ в клетках служит источником энергии живых организмов.

  Получение. Существует 3 основных способа получения К.: химический, электролизный (электролиз воды) и физический (разделение воздуха).

  Химический способ изобретён ранее других. К. можно получать, например, из бертолетовой соли KClO3 , которая при нагревании разлагается, выделяя O2 в количестве 0,27 м3 на 1 кг соли. Окись бария BaO при нагревании до 540 °С сначала поглощает К. из воздуха, образуя перекись BaO2 , а при последующем нагревании до 870 °С BaO2 разлагается, выделяя чистый К. Его можно получать также из KMnO4 , Ca2 PbO4 , K2 Cr2 O7 и других веществ при нагревании и добавлении катализаторов . Химический способ получения К. малопроизводителен и дорог, промышленного значения не имеет и используется лишь в лабораторной практике.