Хроника предсказанной смерти
У клеточной смерти есть два обличия: некроз — насильственная, неожиданная, моментальная гибель от удара ножа (агония, кровавые пятна на ковре), и апоптоз — заранее обдуманное самоубийство (порошок цианистого калия, тихий стук падающего тела). Апоптоз не оставляет улик, и такая манера разделываться с диссидентами вполне соответствует тоталитарному режиму организма. Напротив, смерть от некроза вызывает воспалительную реакцию — расследование поджога, в ходе которого полиция находит другие тела и которое еще долго вызывает общественные волнения.
Как ни странно, биологи далеко не сразу признали важность апоптоза. Биология, в конце концов, это изучение жизни, и в некотором смысле смерть как отсутствие жизни не входит в сферу ее интересов. Многие первые сообщения о программируемой клеточной смерти считались любопытными курьезами, не более. Одним из первых (в 1842 г.) апоптоз описал немецкий революционер, ученый и философ-материалист Карл Фохт, бежавший в Женеву от политического преследования. Несколько позже он стал мишенью блестящего политического памфлета Карла Маркса «Герр Фохт» (1860 г.) из-за своих отношений с Наполеоном III. Но не будем углубляться в политику, а вспомним лучше его скрупулезное исследование метаморфоза жабы-повитухи из головастика во взрослую особь. Фохт использовал микроскоп, чтобы проследить судьбу нотохорда — гибкого, примитивного позвоночника головастика. Его интересовал вопрос, превращаются ли клетки нотохорда в позвоночник взрослой жабы, или они исчезают, а позвоночник формируется за счет новых клеток? Выяснилось, что верен второй ответ: клетки нотохорда погибают (как мы теперь знаем, за счет апоптоза), а их место занимают новые клетки.
Другие ученые XIX в. тоже обращали внимание на апоптоз в связи с метаморфозом. Август Вайсманн, великий немецкий основоположник эволюционной биологии, заметил в 1860-х гг., что в процессе превращения гусеницы в бабочку многие клетки тихо погибают. Как ни странно, он не стал увязывать этот факт со старением и смертью, хотя именно исследования на эти темы впоследствии принесли ему известность. Большинство последующих описаний клеточной смерти тоже были сделаны эмбриологами и затрагивали изменения, происходящие во время развития. Был открыт удивительный факт: у эмбрионов рыб и цыплят погибают целые популяции нейронов. У нас, кстати, тоже. В некоторых областях мозга более 80 % нейронов, образующихся на ранних стадиях развития, исчезают еще до рождения! Клеточная смерть позволяет исключительно точно смонтировать электропроводку мозга: между конкретными нейронами образуются функциональные связи, а на их основе образуются нейронные сети. Многие эмбриологические процессы хочется уподобить ваянию из камня. Как скульптор отсекает ненужные кусочки от глыбы мрамора, чтобы создать прекрасную статую, так и тело созидается за счет изъятия, а не добавления. Наши пальцы, например, образуются за счет запланированной смерти клеток в промежутках между пальцами, а не за счет удлинения зачатков.
У лапчатых птиц, например уток, некоторые клетки в промежутках не погибают, и на лапах остаются перепонки.
Важность апоптоза у взрослых организмов оценили гораздо позже. Сам термин предложили Джон Керр, Эндрю Уайли и Аластер Керри (Университет Абердина) в 1972 г. Придумать его помог им Джеймс Кормак, профессор древнегреческого языка из того же университета («апоптоз» означает «опадание листьев»). Впервые этот термин был использован в названии их статьи в «Британском онкологическом журнале»: «Апоптоз как фундаментальный биологический феномен с множественными функциями в регуляции кинетики тканей». Кстати, Гиппократ обозначал словом «апоптоз» отмирание поврежденных фрагментов костей, а Гален называл так отпадание струпьев.
Джон Керр заметил, что размер печени у крыс не постоянен. Он динамически меняется с изменениями тока крови. Если поток крови в определенных долях печени нарушается, это компенсируется их уменьшением, а уменьшаются они по мере того, как клетки погибают за счет апоптоза (это занимает недели). Напротив, при восстановлении кровотока клетки начинают размножаться, и соответствующие доли постепенно увеличиваются в весе (время восстановления, опять же, исчисляется неделями). Такая эквилибристика происходит везде. В человеческом организме ежедневно умирают, заменяясь новыми, примерно 10 миллиардов клеток. Это не внезапная насильственная смерть, а тихая и незаметная смерть от апоптоза, когда соседние клетки подъедают все свидетельства гибели. То есть апоптоз уравновешивает клеточное деление. Из этого следует, что он не менее важен для нормальных физиологических процессов, чем деление клеток.
Керр, Уайли и Керри показали, что апоптоз протекает практически одинаково в совершенно разных обстоятельствах: при нормальном эмбриональном развитии и при тератогенезе (нарушениях формирования эмбриона), в здоровых тканях взрослого организма, при раке и при регрессии опухоли, а также при усадке ткани, связанной с неиспользованием или старением. Апоптоз также играет важнейшую роль в иммунном ответе организма. Клетки иммунной системы, действующие против тканей собственного тела, во время развития совершают апоптоз, что позволяет иммунной системе различить «свое» и «чужое». После этого клетки иммунной системы используют свои особенности для того, чтобы заставить поврежденные или зараженные клетки тоже совершать апоптоз. Такой скрининг позволяет уничтожить раковые клетки до того, как они начнут пролиферировать.
Последовательность событий при апоптозе отрежиссирована до мельчайших подробностей. Клетка сжимается, на ее поверхности появляются выросты, похожие на пузырьки. ДНК и ядерные белки (хроматин) конденсируются рядом с ядерной мембраной. Наконец, клетка распадается на апоптотические тельца (мелкие, окруженные мембраной структуры), а клетки иммунной системы подбирают их. По сути дела, клетка сама разделывает себя на кусочки, а другие клетки тут же поедают их; такой вот не афишируемый каннибализм. Учитывая все это, становится понятно, что для апоптоза нужна энергия. Клетка не может совершить апоптоз, если не располагает достаточным количеством АТФ. Этим апоптоз очень отличается от характерного для некроза набухания и разрыва клеток. Кроме того, в отличие от некроза, апоптоз не влечет за собой никаких последствий, например воспаления; то, что клетки больше нет, можно понять только по ее отсутствию. Предсказанная смерть тут же забывается.
Палачи
Более десяти лет «евангелисты апоптоза» — Эндрю Уайли и несколько других исследователей — пытались убедить научное сообщество в важности этого явления. Поначалу они сталкивались с непониманием и равнодушием. Уайли начал обращать других в свою веру после того, как показал, что при апоптозе хромосомы распадаются на сегменты с характерным «лестничным» паттерном, который можно выявить при биохимическом анализе. Теперь апоптоз можно было диагностировать в лабораторных условиях, и подозрения циничных биохимиков, что под видом открытия им пытаются преподнести артефакт электронной микроскопии, оказались беспочвенны. Но переломный момент наступил в середине 1980-х гг., когда Роберт Хорвитц (Массачусетский технологический институт) начал идентифицировать гены, отвечающие за апоптоз, у нематоды Caenorhabditis elegans (за это исследование он получил Нобелевскую премию 2002 г., разделив ее с Сиднеем Бреннером и Джоном Салстоном). Эта микроскопическая нематода как модельный объект имеет целый ряд крупных преимуществ. Во-первых, она прозрачная, так что судьбу отдельных клеток можно проследить под микроскопом. Во-вторых, во время эмбрионального развития путем апоптоза погибает небольшая, предсказуемая группа клеток (131 из 1090 соматических клеток, образующих организм нематоды). В-третьих, средняя продолжительность жизни С. elegans составляет всего 20 дней, и ее развитие нетрудно прослеживать в лабораторных условиях.