Ну, мы рассмотрели и те и эти фотографии. Латинские буквы ничего себе, а греческие мне не особенно понравились. По-моему, они ужасные кривляки. Взять хотя бы Кси: прямо змея!
А потом за нами пришла мама-Двойка. Мы простились с автоматом и вернулись на монорельсовую, дорогу, чтобы раз и навсегда разделаться с этими трудными правилами воздушного движения.
Напоследок я успел опустить в щель ещё один жетон и снова получил две картонки с фотографиями. Посылаю их тебе: пригодятся для следующих уроков.
А пока — кси-пси! Привет.
Сева.
Нулики подрались
(Нулик — отряду РВТ)
Здравствуйте, ребята! Не знаю, может, вы и правы, что отрицательных пирожных не бывает, зато отрицательные Нулики встречаются. Сегодня утром один такой отрицательный Нулик напал на другого, который до сих пор считался очень положительным. Ну и драка была! Ещё немного — и они бы взаимоуничтожились. Я уж думал, не рассадить ли их по разным загонам — ну, как эти самые… абсолютные значения. Но тут их растащили другие Нулики. Из этого я сделал вывод, что положительный Нулик только прикидывался положительным. На деле он самый что ни на есть отрицательный! И я им обоим поставил по поведению жирный минус.
В нашей школе занятия продолжаются. Греческие буквы трудные. Мы их пока отложили. Зато латинский алфавит всем понравился. Только как туда попали русские буквы? И почему некоторые из них называются по-другому: P — Пэ, B — Бэ? А вот «О» молодчина! И там и тут пишется одинаково. Это потому, что оно похоже на меня.
Если снова побываете у автомата, непременно спросите: куда ведёт воздушная монорельсовая дорога? Не к тем ли Великанам, которых вызывают, когда мы безобразничаем? И где эти Великаны живут? Справа или слева от Нулевой станции?
Нулик-Профессор
В тесноте, да не в обиде
(Таня — Нулику)
Бедный, бедный Нулик! Ну и каша у тебя в голове! Сначала изобрёл какие-то отрицательные пирожные; потом — положительных и отрицательных Нуликов!
Запомни раз и навсегда: нуль — единственное число, которое не бывает ни положительным, ни отрицательным. Это что-то вроде пограничника, который стоит на рубеже между положительными и отрицательными числами.
Конечно, в твоей школе тоже есть положительные и отрицательные Нулики. Но это ведь совсем другое дело. Просто одни из них хорошие, а другие — плохие.
Второй твой вопрос — о Великанах — очень интересный. Но ответил на него не автомат, а мама-Двойка. Она говорит, что ты любознательный ребёнок.
Оба конца монорельсовой дороги и вправду ведут в Бесконечность. А в Бесконечности, понятно, живут числа — Великаны. Бесконечность тоже бывает положительная и отрицательная. Только там свои, особые законы. Положительные и отрицательные Великаны прекрасно уживаются. Но как это им удаётся, мы не узнали. Это как раз один из тех вопросов, на которые мама-Двойка отвечает: «Всякому овощу своё время».
А теперь танцуй! Мы научились умножать и делить отрицательные числа.
Ты ведь знаешь, что умножение можно рассматривать как сложение.
Умножить два на три — всё равно что сложить три двойки:
То же самое происходит, когда отрицательное число умножают на положительное. Разве умножить минус два на плюс три — это не то же самое, что сложить три отрицательные двойки? А так как при сложении отрицательных чисел вагончики двигаются влево от Нулевой станции, то и произведение будет отрицательное — минус шесть:
— Ну, а если умножить минус три на плюс два? — спросил Сева. — Тогда что? — Какая же разница? — сказала мама-Двойка. — Как было минус шесть, так и останется минус шесть. Вот смотрите:
— Ясно! — кивнул Сева. — Пусть себе множители меняются знаками сколько хотят, произведение всё равно остаётся то же. Оно всегда будет отрицательным, если мы перемножаем два числа с разными знаками. — Сева важно посмотрел на всех. Он был страшно собой доволен. — Все поняли? Тогда поехали дальше. Выясним теперь, что получится, если оба множителя отрицательные?
— Ну что ж, выясняйте, — сказала мама-Двойка, — мы с удовольствием вас послушаем.
— Вы меня не поняли, — смутился Сева. — Это я вас собирался послушать.
— Ах вот оно что! Тогда другое дело.
Всем нам стало неловко за Севу. Мы подумали, что мама-Двойка обиделась, но она посмотрела на нас смеющимися глазами и продолжала:
— Вы хотели знать, что происходит при перемножении двух отрицательных чисел? Нетрудно догадаться. Чтобы умножить любое число на положительное, надо отложить его на монорельсе в ту же сторону от Нулевой станции, с какой оно находится. Это мы только что видели.
Когда же мы умножаем любое число на отрицательное, всё происходит наоборот. Вы ведь знаете, какие упрямцы эти отрицательные числа! Поэтому умножаемое откладывается не с той стороны, где оно находится, а по другую сторону от нуля:
Теперь нетрудно понять, что получится при умножении отрицательного числа на отрицательное; в этом случае умножаемое надо откладывать вправо от нуля:
— Вот те раз! — Брови у Севы стали прямо как два вопросительных знака. — Отрицательное число, умноженное на отрицательное, становится положительным?! Чудеса!
— Такие чудеса случаются у нас в Аль-Джебре на каждом шагу, — ответила мама-Двойка.
— Ну, если так, расскажите нам поскорее про деление. Там, наверное, будут какие-нибудь новые чудеса?
— Ничуть не бывало. Деление — действие, обратное умножению. Стало быть, и правила знаков не меняются:
Мы почувствовали себя ужасно образованными. А пуще всех — Сева.
— Теперь нам всё нипочём! — заявил он. — Мы знаем эту дорогу как свои пять пальцев!
— Ошибаетесь, — сказала мама-Двойка, — вы познакомились только с целыми числами.
— А разве здесь есть и другие?
— А как же!
— Вы, наверное, подразумеваете дробные числа, — предположил Олег.
— Не только. Дробные числа — это те, что расположены между целыми числами. — Мама-Двойка указала на палочки ограды, которые мы недавно пересчитывали. — Здесь расстояние между двумя целыми числами разделено на десять равных частей. Каждая из них составляет одну десятую единицы. Но ведь этих делений может быть и гораздо больше. Мысленно мы можем разделить это расстояние на любое число частей.
— Значит, вагончик может останавливаться не только у целого числа, но и у любой дроби, то есть между станциями?
— Ну конечно! В любом месте, по первому требованию!
Мы тут же вызвали вагончик и заставили его остановиться сперва против числа 2,5 а потом против 3,44… Этого нам показалось мало. Мы назвали число минус пять и четыре миллионных: −5,000 004, и красный вагончик, миновав Нулевую станцию, превратился в синий и остановился на волосок дальше станции минус 5.
— Выходит, — неуверенно сказал Сева, — вся эта бесконечная дорога сплошь заполнена числами?
— Именно сплошь! — ответила мама-Двойка. — Можно сказать, непрерывно. У нас очень большая плотность населения. На всём пути не сыскать ни одной точечки, не заселённой каким-нибудь числом. Есть среди этих чисел и такие, величину которых мы никогда не можем вычислить точно.
— Что ж это за число, которое нельзя вычислить?
— Ну хотя бы корень квадратный из двух: