Но это была ещё только одиннадцатая клетка!

Стемнело. Зажгли светильники. Слуги чуть не падали от усталости. Когда они дошли до семнадцатой клетки, им нужно было отсчитать шестьдесят пять тысяч пятьсот тридцать шесть зёрен. Но тут они сбились со счёта. Несмотря на то что была уже глубокая ночь, шах велел разбудить мудрецов. Теперь он уже не смеялся — побледнел, осунулся…

Прошли сутки, и ещё одни сутки, и ещё одни сутки, а мудрецы всё считали… Вот уже и они стали валиться от усталости, а конца всё ещё не было видно. Слуги вносили всё новые и новые мешки…

Но вот вбежал насмерть перепуганный хранитель шахских запасов. Он доложил, что в амбарах не осталось ни одного рисового зёрнышка.

— Негодяй! — закричал шах страннику. — Ты разорил меня!

— Я просил тебя накормить голодных. — ответил странник, — ты не захотел этого. Тогда я изменил свою просьбу. И ты счёл меня глупцом. Попробуй теперь сосчитать, сколько зёрен нужно положить на последнюю, шестьдесят четвёртую клетку, и ты поймёшь, кто из нас глупец. Опустоши все рисовые поля на свете — тебе и этого не хватит, чтобы со мной расквитаться.

— Ах так! — в бешенстве закричал шах. — Сейчас ты узнаешь, умею ли я платить сполна. Отрубить ему голову!..

— Такова шахская справедливость, — закончила свой рассказ Шестёрка. — А теперь прошу вас убедиться, что задача эта очень проста, но практически невыполнима. Число рисовых зёрен росло по такому правилу: 1, 2, 4, 8, 16, 32 и так далее. Каждое последующее число больше предыдущего в два раза.

Такой ряд чисел называется геометрической прогрессией. Только, пожалуйста, не путайте её с арифметической. В арифметической прогрессии каждое последующее число больше предыдущего на одно и то же число — оно называется разностью прогрессии. В геометрической прогрессии каждое последующее число больше предыдущего в одно и то же число раз, и число это называется знаменателем прогрессии.

В нашей задаче знаменатель прогрессии равен двум. Если хотите, эту прогрессию можно записать и так:

20, 21, 22, 23, 24, 25, 26

Нетрудно догадаться, что на шестьдесят четвёртой клетке должно быть 263 — два в шестьдесят третьей степени зёрен, потому что на первую клетку приходится 2— два в нулевой степени зёрен, то есть одно зерно. Но если вы попробуете сосчитать, чему равно два в шестьдесят третьей степени, вы ужаснётесь. Такого огромного количества зёрен никогда не смог бы раздобыть жестокий шах. Он не смог бы даже прочитать это число. Вот оно: 9 223 372 036 854 775 808 — девять квинтиллионов двести двадцать три квадриллиона триста семьдесят два триллиона тридцать шесть миллиардов восемьсот пятьдесят четыре миллиона семьсот семьдесят пять тысяч восемьсот восемь… Уф!

Попробуйте подсчитать, сколько это килограммов риса, если каждое зёрнышко в среднем весит 0, 0182 грамма. Знаете, что получится? Больше ста шестидесяти семи триллионов килограммов! Стоит ли доказывать, что моя задача хоть и проста, но практически невыполнима?

Шестёрка поклонилась и села. Ей долго хлопали. Потом поднялась латинская буква Эн. Она сказала так:

— Уважаемая Шестёрка познакомила нас с геометрической прогрессией, где все числа непрерывно растут. Такая прогрессия называется возрастающей. Я позволю себе занять ваше внимание сразу двумя геометрическими прогрессиями — возрастающей и убывающей. И сделаю это на одном и том же примере. Задача моя будет так же проста, как и предыдущая, и так же невыполнима. Моя предшественница рассказала прелестную указку об изобретателе шахмат и коварном шахе. Позвольте и мне задать рам задачу, связанную с шахматами.

Эн вынула из кармана платок, развернула его и показала публике. На платке были нарисованы шестьдесят четыре квадрата, чёрные и белые, — как и на шахматной доске.

— Будем считать, — продолжала Эн, — что этот платок заменяет нам шахматную доску. Обратите внимание — толщина платка равна 0,1 — одной десятой миллиметра. Складываю платок пополам. Теперь его толщина стала вдвое больше: две десятых миллиметра. Зато и площадь его Стала меньше в 2 раза. Складываю платок ещё раз вдвое. Теперь его толщина в 4 раза больше первоначальной, но и площадь уменьшилась в 4 раза. Попробуйте таким образом перегнуть платок 64 раза. — Эн бродила платок в зал, кто-то его подхватил и стал перегибать: раз, второй…

— Готово! Теперь видна только одна клетка. Площадь платка уменьшилась в шестьдесят четыре раза.

— Вы меня не поняли, — возразила Эн самонадеянному зрителю. — Я просила не площадь платка уменьшить в 64 раза, а перегнуть его 64 раза. А это совсем не одно и то же. Если бы вам удалось это сделать, толщина платка стала бы такой большой, что он перерос бы горы, миновал солнце и упёрся бы в какую-нибудь отдалённую звезду.

— А вы докажите! — крикнули в зале.

Тогда Эн стала решать задачу на доске.

— Неужели вы не догадались, что я почти повторила предыдущую задачу? После каждого перегибания толщина платка увеличивается вдвое и возрастает по закону геометрической прогрессии: 2, 4, 8, 16, 32, 64 и так далее. Разница только в том, что после шестидесяти четырёх перегибаний толщина платка станет больше не в 263, а в 264 раз. Оно и понятно: ведь эта прогрессия начинается не с 2— двух в нулевой, а с 2— двух в первой степени. Толщина развёрнутого платка 0,1 миллиметра. Чтобы вычислить толщину сложенного платка, надо 0,1 умножить на 264. Получается 1844674 407 371 километр.

Один триллион восемьсот сорок четыре миллиарда шестьсот семьдесят четыре миллиона четыреста семь тысяч триста семьдесят один километр.

А ведь расстояние от Земли до Солнца всего-навсего около ста пятидесяти миллионов километров!

Путешествие по Карликании и Аль-Джебре - i_162.png

Кажется, условие состязания выполнено: задача проста и практически невыполнима.

— А где же обещанная убывающая прогрессия? — спросил Сева.

— Да здесь же, — ответила Эн. — Ведь в то время как толщина платка увеличивается, площадь его все время уменьшается 1/2, 1/4, 1/8, 1/16, 1/32, 1/64 и так далее. Это и есть убывающая геометрическая прогрессия. После шестидесяти четырёх перегибаний площадь станет в два, взятое в шестьдесят четвёртой степени раз, меньше первоначальной. И если бы складывали платок дальше, то она всё время приближалась бы к нулю, а толщина (или высота) стремилась бы к Великанам в Бесконечность. Вы согласны? Тогда благодарю за внимание.

В зале снова зашумели, захлопали. Барон Мюнхгаузен позвонил в колокольчик и сказал:

— Жюри одинаково восхищено и той и другой задачей. Обеим участницам вручается первый приз.

Он передал победительницам шахматные доски с красивыми фигурами из слоновой кости и добавил:

— Меня так заинтересовали оба выступления, что следующее путешествие я совершу в Бесконечность. А потом — кто знает? — может быть, доберусь и до Нуля!

Барон поклонился. Соревнования кончились, и мы отправились спать.

Ведь завтра нам идти на строительство! А перед этим не мешает хорошенько отдохнуть.

Олег.

Новые открытия нулика

(Нулик — отряду РВТ)

Здравствуйте, ребята! Ну и работу вы нам задали! Теперь мы только и делаем, что играем в шахматы. Каждый сам смастерил себе доску и фигуры. Играем с утра до вечера — то друг с другом, а то и каждый сам с собой. Но я всё-таки успел сделать открытие: по шахматной доске сразу видно, что Карликания и Аль-Джебра друзья. Ведь каждая шахматная клетка имеет своё обозначение, которое состоит из цифр и букв.

Например, е5, а4, d8. Разве это не доказательство дружбы?

Задачу с зёрнами всё-таки решили проверить. Конечно, без риса. Просто все стали писать на своих досках, сколько надо положить рисинок на каждую клетку: