Эта головоломка достаточно проста, и я привел ее здесь для того, чтобы познакомить читателей с одним ценным правилом, которое можно использовать при создании головоломок такого типа. Поскольку никакие две части не имеют одинаковой формы, решение становится единственным, а отыскать его сложнее, чем без этого дополнительного условия.
52
Наверное, все помнят задачу о человеке, который шел с бочонком меда и повстречал покупателя с кувшинами вместимостью 3 и 5 кварт, желавшего купить 4 кварты меда. Это довольно просто сделать, манипулируя с двумя мерами до тех пор, пока вы не получите четыре требуемые кварты; и все же испытайте свои способности, прикинув, за какое минимальное число операций можно выполнить такое задание.
Эта хорошо известная головоломка подготовит вас к тому, чтобы взяться за следующую довольно запутанную задачу. Каким образом торговец, у которого на телеге бочка яблочной водки и бочка сидра (по 31 1/2 галлона в каждой бочке), может отлить покупателю на 21 доллар 6 центов напитка «Утренняя роса», который представляет собой не что иное, как смесь водки и сидра. У продавца есть только меры в 2 и 4 галлона, а покупателю нужно наполнить свой бочонок вместимостью 26 галлонов.
Сначала определите, какие пропорции яблочной водки и сидра в 26 галлонах «Утренней росы» стоят ровно 21,06 доллара, а затем выясните, за какое наименьшее число манипуляций продавец может наполнить бочонок покупателя требуемым количеством напитка.
53
Учитель, изображенный на рисунке, объясняет своим ученикам тот странный факт, что если 2 умножить на 2 и к 2 прибавить 2, то получатся одинаковые результаты.
Хотя 2 – единственное число, обладающее этим свойством, тем не менее существует много пар разных чисел, которые можно подставить вместо аи bв уравнения, выписанные справа на доске. Сумеете ли вы найти такую пару? Разумеется, эти числа могут быть и дробными, но равенства должны выполняться абсолютно точно.
54
Вот интересная головоломка, напоминающая игру в 15. На каждом из 12 кубиков, помещенных в вертикальный желоб, который вы видите на рисунке, имеется по букве. При чтении сверху вниз они образуют правильное слово Требуется переместить кубики в горизонтальный желоб так, чтобы и при чтении слева направо это слово не нарушилось.
Легко понять, что задача решается с любым словом из 12 букв, но результаты в каждом случае будут различными. Некоторые слова ведут себя лучше других, и делом везенья и опыта будет установить, с каким из слов задача решается при наименьшем числе манипуляций.
55
Три человека начали игру в бильярд и, как общепринято, решили, что платить за пользование бильярдом будет проигравший. Игрок № 1, мастер своего дела, взялся уложить в лузу столько же шаров, сколько и игроки № 2 и № 3, вместе взятые. Едва они начали игру, как вошел четвертый человек и присоединился к играющим. Поскольку он был посторонним, то не получил форы и играл на равных с тремя остальными игроками.
На рисунке показана полка, на которой лежат шары, забитые каждым из игроков. По окончании игры возник спор, кто именно проиграл.
Головоломка состоит в том, чтобы выяснить, кто из игроков должен платить в соответствии с заключенным соглашением. Эта задача не так проста, как кажется на первый взгляд. Игрокам для ее решения пришлось привлекать посторонних арбитров. Итак, кто из игроков должен платить и почему?
56
Прогуливаясь как-то с приятелем по Кони-Айленд, я набрел на довольно забавный аттракцион. На полках были расставлены, как показано на рисунке, десять кукол, на каждой из которых было обозначено число очков. Требовалось попасть в них небольшими мячиками. Зазывала объяснял:
– Бросайте мячики столько раз, сколько захотите, по центу за каждый бросок и подходите к куклам так близко, как пожелаете. Складывайте очки на сбитых вами куклах, и, как только сумма окажется равной 50, не больше и не меньше, вы получите великолепную сигару с золотым ободком стоимостью 25 центов.
Наши деньги кончились прежде, чем мы поняли, как следует играть, и мы заметили, что большинство игравших курило столько же 25-центовых сигар, сколько и мы. Сможете ли вы показать, каким образом нужно играть, чтобы выбить ровно 50 очков?
57
Во время недавнего парада по случаю дня святого Патрика возникла довольно любопытная головоломка. Главный маршал, как обычно, заметил, «что члены благородного и древнего ордена святого Патрика проведут парад после полудня, если дождь пойдет утром, но парад состоится утром, если дождь пойдет после полудня». Это замечание привело ко вполне сложившемуся мнению о том, что в день святого Патрика о дожде можно судить со всей определенностью. Кейси похвалялся, что «вот уже четверть века он участвует в каждом параде по случаю дня святого Патрика». Однако возраст и пневмония одолели наконец Кейси и вырвали его из рядов этой славной процессии. Когда парни вновь собрались 17 мая, дабы оказать честь себе и святому Патрику, то обнаружили в своих рядах брешь, которую оказалось трудно заполнить. На самом деле брешь была столь велика, что парад превратился буквально в объятую паникой похоронную процессию.
Согласно обычаю, парни шли шеренгами по 10 человек, только в последней шеренге, где обычно находился Кейси – из-за своей левой хромой ноги, – было 9 человек. Они прошли уже квартал или два в этом порядке, как звуки оркестра прямо-таки потонули в криках зрителей: «Куда делся низенький хромой парень?» Пришлось срочно перестраивать колонну в шеренги по 9 человек, поскольку шеренги из 11 человек не подходили.
Но Кейси-то все равно не было с ними, и процессия остановилась, когда обнаружилось, что в последней шеренге идут только 8 человек. Колонну срочно перестроили в шеренги по 8 человек, но тогда в последней шеренге оказалось 7 человек. Та же самая история происходила с шеренгами по 7, 6, 5, 4, 3 и даже по 2 человека: всегда в последней шеренге оставалось вакантное место для Кейси. И хотя мы-то понимали, что это лишь глупое суеверие, но по рядам пошел шепот, что на марше слышен «припадающий» шаг хромой ноги Кейси. Парни были так твердо убеждены в том, что вместе с ними марширует призрак Кейси, что ни один не хотел оказаться в замыкающей шеренге.
Однако главный маршал оказался человеком сообразительным и выстроил всех в колонну по одному; так что если дух Кейси и присутствовал на параде, то он замыкал самую длинную процессию, которая когда-либо устраивалась в честь его святого покровителя.
Принимая, что число участников парада не превосходит 7000, определите, сколько человек участвовало в процессии.