На том же подносе лежала кучка стерильных тампонов. С помощью механических рук Стоун по одному поднимал тампоны, брал мазки с поверхности капсулы и переносил их на чашечки со средой. Ливитт выстукивал на клавиатуре входного устройства ЭВМ необходимые данные, чтобы впоследствии не перепутать, откуда какой мазок взят. Покончив с наружной поверхностью, они перешли к контейнеру. С предельной осторожностью, включив максимальное увеличение, Стоун взял соскобы с зеленых пятнышек и перенес их в различные питательные среды. В заключение он подцепил крохотным пинцетом саму песчинку и перенес ее в чистую стеклянную чашечку.
Вся эта работа отняла больше двух часов; затем Ливитт ввел в ЭВМ программу под названием «Макс-культ». Эта программа перекладывала на ЭВМ все заботы о сотнях культур, высеянных в чашках Петри. Одни чашки будут выдерживаться при нормальном давлении и комнатной температуре в обычной земной атмосфере, другие подвергнутся воздействию тепла и холода, высоких давлений и вакуума, бескислородной и избыточно кислородной атмосферы, света и темноты. Человеку потребовалось бы несколько дней только на то, чтобы рассовать все чашки по нужным камерам. ЭВМ могла это сделать за несколько секунд.
Когда программа была запущена, Стоун установил чашки Петри стопками на конвейерную ленту, и та понесла их к камерам выращивания культур. Теперь им оставалось только ждать, ждать сутки, а то и двое, чтобы узнать, что именно выросло на этих посевах.
— А тем временем, — сказал Стоун, — можно приступить к анализу песчинки — если это действительно песчинка. Вы в ладах с электронным микроскопом?
— Подзабыл, наверно, — признался Ливитт. С электронным микроскопом ему не приходилось работать уже без малого год.
— Тогда я подготовлю образец. Еще надо будет произвести масс-спектрометрию. Впрочем, это делается автоматически. Но сначала нужно большее увеличение. Какое у нас максимальное оптическое увеличение в морфологической?
— Тысячекратное.
— Начнем с этого. Направьте песчинку в морфологическую лабораторию…
Ливитт бросил взгляд на пульт и нажал кнопку «Морфология». Стоун манипуляторами бережно установил чашечку с песчинкой на конвейерную ленту. Не сговариваясь, они обернулись и посмотрели на стенные часы. 11.00 — они работали без отдыха уже 11 часов.
— Ну что ж, — заметил Стоун, — пока все вроде бы хорошо…
Ливитт улыбнулся и, как суеверный школьник, скрестил средний и указательный пальцы.
Глава 16
Секционная
Бертон работал в секционной. Он нервничал, все еще не в силах отделаться от воспоминаний о Пидмонте. Позже, анализируя свою работу и ход мыслей, он горько сожалел, что тогда, на пятом уровне, не сумел взять себя в руки.
Ибо уже в самой первой серии опытов Бертон допустил несколько ошибок.
По инструкции в его обязанности входило патолого-анатомическое исследование мертвых животных, но на него возложили также и предварительное определение путей распространения болезни. По правде говоря, такая работа была не под силу Бертону; Ливитт подошел бы для нее куда больше. Однако считалось, что Ливитт будет полезнее на предварительном этапе выделения и распознавания чуждого микроорганизма. Поэтому исследовать пути распространения болезни поручили Бертону.
Эксперименты эти были достаточно просты и элементарны. Для начала Бертон поставил в ряд несколько клеток. Каждая из них снабжалась воздухом автономно; системы подачи воздуха можно было соединять между собой различными способами. Герметизированную клетку с трупом норвежской крысы он поставил рядом с другой клеткой, где сидела живая крыса. Нажал несколько кнопок и открыл свободный доступ воздуха из первой клетки во вторую. Крыса кувыркнулась и сдохла.
«Любопытно, — подумал Бертон, — перенос по воздуху…»
Подцепил еще одну клетку с крысой и поставил возле двух предыдущих, но в соединительном воздухопроводе установил микропористый фильтр с диаметром пор 100 ангстрем — размер мелкого вируса. Открыл доступ воздуха через фильтр. Крыса осталась жива. Подождал еще минуту-другую. Вывод был ясен: каков бы ни был возбудитель болезни, по размеру он больше вируса.
Бертон несколько раз менял фильтры, ставил все более и более крупнопористые, пока возбудитель, наконец, не прорвался через поры и крыса не сдохла. Проверил диаметр пор: два микрона — величина небольшого одноклеточного организма.
«Это уже нечто ценное, — подумал он, — теперь я знаю размеры возбудителя…»
Открытие было и вправду важное: одним простым экспериментом он исключил возможность того, что болезнь вызывается белковой или иной молекулой. В Пидмонте они со Стоуном подумали было, что разносчик болезни — газ, например выделяемый патогенным организмом. Теперь стало ясно, что газ ни при чем: возбудитель болезни имеет размеры клетки, иначе говоря, много крупнее молекулы или частицы газа.
Следующий шаг представлялся не более сложным — определить, заразны ли трупы.
Из клетки, где лежала одна из мертвых крыс, он выкачал воздух. От спада давления крысу разорвало, но Бертон, не обращая на это внимания, продолжал откачивать воздух, пока не достиг предельного вакуума. Затем заполнил клетку чистым, профильтрованным воздухом и открыл этому воздуху доступ к клетке с живой крысой.
Ничего не произошло.
«Любопытно», — подумал он снова. При помощи дистанционно управляемого скальпеля он вскрыл мертвое животное, чтобы микроорганизмы могли из внутренностей перейти в воздух.
И опять ничего не произошло. Живая крыса весело бегала по своей клетке.
Результат был ясен: мертвые животные не заразны. «Вот почему остались живы стервятники в Пидмонте, — подумал он. — Болезнь не может передаваться через трупы — ее передают бациллы, или как их там еще, и только по воздуху…»
Бациллы в воздухе — смертельны.
Бациллы в трупах — безвредны.
В определенном смысле это можно было предвидеть. Такой результат хорошо увязывался с теориями аккомодации, взаимной приспособляемости бактерий и человека. Бертон давно интересовался проблемой приспособляемости и даже прочитал несколько лекций на эту тему в Бейлорском медицинском институте.
Большинство людей, едва заслышав о бактериях, тут же вспоминают о болезнях. На деле же болезнетворны лишь три процента бактерий; остальные либо безвредны для человека, либо даже полезны. В нашем пищеварительном тракте живут, например, многие виды бактерий, способствующие лучшему усвоению пищи. Человек нуждается в них, он от них зависит.
По существу мы обитаем в океане бактерий. Они повсюду — на коже, в ушах и во рту, в легких и в желудке. Все, что у нас есть, все, к чему мы прикасаемся, каждый наш вдох — все насыщено бактериями. Они вездесущи, но мы, как правило, даже не подозреваем об этом.
И тому есть причина: как человек, так и бактерии привыкли, приспособились друг к другу, выработали своего рода взаимный иммунитет.
И этому тоже есть веская причина. Один из основополагающих принципов биологии гласит, что эволюция направлена к тому, чтобы возможность продолжения рода непрерывно возрастала. Если человек быстро погибает от бактериальной инфекции, значит, он плохо приспособлен к существованию; он не проживет достаточно долго для того, чтобы воспроизвести себя в потомстве. Но и бактерии, убивающие своего хозяина, приспособлены не лучше. Ведь паразит, убивающий организм, на котором паразитирует, тоже обречен и должен погибнуть вместе с ним. По-настоящему преуспевают те паразиты, которые питаются за счет своего хозяина, не убивая его. А наиболее приспособленный хозяин — тот, кто не только сосуществует с паразитом, но и извлекает из него пользу, заставляя работать на себя.
— Самые приспособившиеся из бактерий, — любил повторять Бертон, — это те, которые вызывают легкие болезни или же не вызывают вообще никаких. Одну и ту же клетку стрептококка вы можете носить в своем организме шестьдесят — семьдесят лет, благополучно жить, взрослеть и производить потомство, и стрептококк будет жить не менее благополучно. Равные образом в вас годами может жить стафилококк, и единственной вашей расплатой за это будут несколько угрей или прыщиков. С туберкулезом можно жить многие десятилетия, а с сифилисом — и всю жизнь. Эти две болезни отнюдь не из легких, но они стали гораздо менее опасны, чем были некогда, — человек и бактерия взаимно приспособились друг к другу…