Понижение температуры и увеличение магнитного поля приводят к увеличению (Dr/r )^ . П. Л. Капица (1929), используя магнитные поля в несколько сот тысяч э и сравнительно низкие температуры (температура жидкого азота), обнаружил существенное увеличение сопротивления большого числа металлов и показал, что в широком интервале магнитных полей (Dr/r )^ линейно зависит от магнитного поля (закон Капицы).
В слабых магнитных полях (Dr/r )^ пропорционально H2 . Коэффициент пропорциональности между (Dr/r )^ и H2 положителен, т. е. сопротивление растет с увеличением магнитного поля. Изменение сопротивления в магнитном поле называется чётным Г. я., т. к. (Dr/r)^ не изменяет знак при изменении направления поля Н на обратное.
Так как сопротивление весьма чувствительно к качеству образца (к количеству примесей и дефектов кристаллической решётки), а также к температуре, то каждое измерение приводит к новой зависимости r от Н . Имеющиеся экспериментальные данные для металлов удобно описывать, выразив (Dr/r )^ в виде функции от Нэф = Hr300 /r, где r300 — сопротивление данного металла при комнатной температуре (Т = 300К), а r — при температуре эксперимента. При этом различные данные, относящиеся к одному металлу, укладываются на одну кривую (правило Колера).
Основная причина Г. я. —искривление траекторий носителей тока (электронов проводимости и дырок) в магнитном поле (см. Лоренца сила ). Траектория носителей в магнитном поле может существенно отличаться от траектории свободного электрона в магнитном поле — круговой спирали, навитой на магнитную силовую линию. Разнообразие траекторий носителей тока у различных проводников — причина разнообразия Г. я., а зависимость траектории от направления магнитного поля — причина анизотропии Г. я. в монокристаллах. Мерой влияния магнитного поля на траекторию электрона является отношение длины свободного пробега l электрона к радиусу кривизны его траектории в поле Н: rн = cp/eH (р — импульс электрона). По отношению к Г. я. магнитное поле считают слабым, если Н £Но = el/cp, и сильным, если Н ³ Н .
При комнатных температурах для различных металлов и хорошо проводящих полупроводников H ~ 105 —107э, для плохо проводящих полупроводников Н ~108 —109 э. Понижение температуры увеличивает длину пробега l и потому уменьшает значение H . Это позволяет, используя низкие температуры и обычные магнитные поля (~104 э), осуществлять условия, соответствующие сильному полю Н >> Н .
Измерение сопротивления монокристаллических образцов металлов в сильных магнитных полях — один из важных методов изучения металлов. Исследуется зависимость сопротивления от величины магнитного поля и его направления относительно кристаллографических осей. Теория Г. я. показала, что зависимость сопротивления от поля Н существенно связана с энергетическим спектром электронов. Резкая анизотропия сопротивления в сильных магнитных полях (у Au, Ag, Cu, Sn и др.) означает существ, анизотропию Ферми поверхности . И, наоборот, небольшая анизотропия сопротивления в магнитном поле означает практическую изотропию поверхности Ферми. При этом, если с ростом магнитного поля для всех направлений r не стремится к насыщению (Bi, As и др.), то электроны и дырки содержатся в проводниках в равных количествах. Стремление сопротивления к насыщению означает, что преобладают либо электроны, либо дырки (тип носителей может быть установлен по знаку постоянной Холла).
Наряду с поперечными Г. я. наблюдается также небольшое изменение сопротивления металлов в магнитном поле, параллельном току I : (Dr/r )|| , наз. продольным гальваномагнитным эффектом. В сильных магнитных полях обнаруживаются квантовые эффекты, проявляющиеся в немонотонной (осциллирующей) зависимости постоянной Холла и сопротивления от поля Н.
При изучении Г. я. в тонких плёнках и проволоках имеет место зависимость (Dr/r )^ и (Dr/r )|| от размеров и формы образца (размерные эффекты). С ростом Н при rn £ d (d — наименьший размер образца) эта зависимость исчезает. В ферромагнитных металлах и полупроводниках (ферритах ) Г. я. обладают рядом специфических особенностей, обусловленных существованием самопроизвольной намагниченности в отсутствие магнитного поля. Например, эдс Холла в ферромагнетиках зависит не только от среднего поля Н в образце, но и от намагниченности, сопротивление в слабых полях иногда убывает (см. Ферромагнетизм , Холла эффект ).
Лит.: Лифшиц И. М., Каганов М. И., Некоторые вопросы электронной теории металлов, «Успехи физических наук», 1965, т. 87, в. 3; 3айман Дж., Принципы теории твердого тела, пер. с англ., М., 1966
М. И. Каганов.
Гальванометр
Гальвано'метр (от гальвано... и ...метр ), высокочувствительный электроизмерительный прибор, реагирующий на весьма малую силу тока или напряжение. Наиболее часто Г. используют в качестве нуль-индикаторов, т. е. устройств для индикации отсутствия тока или напряжения в электрической цепи. Применяют Г. и для измерений малых силы тока и напряжения, определив предварительно постоянную прибора (цену деления шкалы). Различают Г. постоянного и переменного тока. Первые Г. постоянного тока были созданы в 20-х годах 19 в. и по принципу действия являлись приборами магнитоэлектрической системы (см. Магнитоэлектрический прибор измерительный). Они состояли из магнитной стрелки, подвешенной на тонкой нити и помещенной внутри катушки из проволоки. При отсутствии тока в катушке стрелка устанавливается по магнитному меридиану данного места. Появление тока вызывает отклонение стрелки от первоначального положения. В 19 в. было создано много конструктивных разновидностей Г. с подвижной магнитной стрелкой и они широко применялись при научных исследованиях электромагнитных явлений. Так, например, в 1886 Г. Кольрауш, пользуясь таким Г., определил с высокой точностью электрохимический эквивалент серебра.
В 1881 французский учёный Ж. А. д'Арсонваль создал Г. с подвижной катушкой, в котором подвижным элементом служил проводник с током, помещенный в поле постоянного магнита. В зависимости от конструкции подвижной части такие Г. подразделяют на Г. рамочные (подвижная часть — рамка с несколькими витками проволоки), петлевые (подвижная часть — петля из одного витка проволоки) и струнные (подвижная часть — провод, натянутый как струна). В качестве примера на рис. 1 показано устройство рамочного Г. В поле постоянного магнита 1 расположена рамка 2, на оси которой укреплена стрелка-указатель 3. Протекающий по виткам рамки ток взаимодействует с полем постоянного магнита и создаёт вращающий момент, вызывающий поворот подвижной части и соответственно перемещение стрелки относительно шкалы. Для повышения чувствительности Г. на подвижной части вместо стрелки указателя укрепляют миниатюрное зеркальце оптического отсчётного устройства. На рис. 2 показан зеркальный Г. с оптическим устройством. Луч света от осветителя 1 падает на зеркальце 3 и, отражаясь от него, попадает на шкалу 4. Шкалу устанавливают на расстоянии 1,5—2 м от Г., поэтому даже весьма малые угловые перемещения зеркальца вызывают заметные отклонения светового пятна на шкале от его нулевого положения. Разновидностью являются Г. со световым отсчётом, у которых осветитель и шкала размещены в одном корпусе с механизмом Г. В этом случае для получения достаточной длины светового луча применяют многократное отражение его от нескольких неподвижных зеркал.