Алгебраическая символика

Рост содержания математических знаний всегда связан с развитием математической символики. Последняя, если она достаточно хорошо отражает реальную сущность математических операций, активно воздействует на математику и сама приобретает оперативные свойства. Единую систему алгебраических символов, последовательно проведенную, первым дал, по-видимому, Виета.

Франсуа Виета (1540–1603) – французский математик, юрист по образованию и роду деятельности. Главный труд его жизни – «Введение в искусство анализа», огромное и чрезвычайно обстоятельно написанное сочинение по новой алгебре.

Правда, он не был полностью завершен.

Замысел Виеты определялся следующими соображениями: крупные успехи итальянских математиков в решении уравнений 3-й и 4-й степени достигнуты благодаря применению эффективных алгебраических приемов. Но число отдельных видов алгебраических уравнений огромно и растет, достигнув, например, у Кардано шестидесяти шести; каждый из видов требовал особых приемов. Необходимо найти общие методы подхода к решению алгебраических уравнений; последние должны рассматриваться в возможно более общем виде с буквенными коэффициентами. Кроме того, необходимо сочетать эффективность алгебраических приемов со строгостью геометрических построений, хорошо знакомых Виете.

Благодаря созданной им символике впервые появилась возможность выражения уравнений и их свойств общими формулами. Объектами математических операций стали не числовые задачи, а сами алгебраические выражения. Именно этот смысл вкладывал Виета в характеристику своего исчисления как «искусства, позволяющего хорошо делать математические открытия». Символы Виеты были вскоре усовершенствованы его младшими современниками, особенно Гэрриотом (1560–1621).

В сочинениях Виеты подводится своеобразный итог математики эпохи Возрождения. Но его алгебра была еще несовершенной. Ее очень утяжеляла видовая трактовка величин, обладающих размерностью. В ней нет общей трактовки степеней, все степени натуральные. Принципиальное разделение чисел и алгебраических величин не позволяло ему употреблять радикалы для величин, а лишь для чисел. Эту алгебру скоро вытеснила алгебра Декарта. Однако известно, что Ферма, например, придерживался алгебры Виеты, когда строил аналитическую геометрию.

Алгебраисты завершили символическое оформление своей науки и пробовали формулировать и решать проблемы общей теории алгебраических уравнений. Тригонометрия отделилась от астрономии, ее результаты получили достаточную степень общности. Полностью освоено геометрическое наследие древних. Математика постоянных величин к концу XVI века завершала цикл своего формирования.

Центр тяжести научных исследований сместился в область переменных величин. В математике наступал новый период.

Аналитическая геометрия Декарта

Столетие в жизни науки – большой срок, в течение которого успевает происходить труднообозримое множество событий. Воссоздание полной фактической картины – дело специалистов. Мы же можем в целях первоначального ознакомления лишь выделить главные линии развития, отметить закономерности этого развития.

В XVII веке начало учению о перспективе и проективной геометрии было положено в сочинениях Ж. Дезарга (1593–1661) и Б. Паскаля (1623–1662). Первую научную форму приобрела теория вероятностей, особенно благодаря открытию Я. Бернулли (1654–1705) простейшей формы закона больших чисел. Элементарная математика приобрела завершенную форму благодаря исчезновению риторической алгебры и замене ее символической, а также изобретению логарифмов.

Но главным и определяющим для XVII века является то, что математика преобразовалась, превращаясь в математику переменных величин. Произошло расширение ее предмета за счет включения в него движения и средств его математического отображения.

Рене Декарт (1596–1650) был выдающимся французским ученым: философом, физиком, математиком, физиологом. Образование, в силу принадлежности к древнему и знатному дворянскому роду, он получил в иезуитском колледже, славившемся постановкой обучения. Всю жизнь он продолжал совершенствоваться в науках, временами предаваясь им целиком. Целью естественно-научных занятий Декарта была разработка общего дедуктивно-математического метода изучения всех вопросов естествознания. При этом он совершенно отделил этот род своих занятий от метафизических рассуждений идеалистического характера. В границах физики Декарта единственную субстанцию, единственное основание бытия и познания представляет материя.

Природой материи, утверждал Декарт, является ее трехмерная объемность; важнейшими свойствами ее – делимость и подвижность. Эти же свойства материи должна отображать математика. Она не может быть либо численной, либо геометрической. Она должна быть универсальной наукой, в которую входит все, относящееся к порядку и мере. Все содержание математики должно рассматриваться с единых позиций, изучаться единым методом; само название науки должно отражать эту ее всеобщность. Декарт предложил назвать ее универсальной математикой (Mathesis universalis).

Эти общие идеи конкретизировались к 1637 году, когда вышло в свет знаменитое декартово «Рассуждение о методе», в котором, помимо общей характеристики метода естественно-научных исследований, выделены в отдельные части приложения метода к диоптрике, метеорам и к математике. Последняя часть носит название «Геометрия»; она и представляет для нас наибольший интерес.

В основу всей «Геометрии» Декарта положены две идеи: введение переменной величины и использование прямолинейных (декартовых) координат. Переменная величина вводится в двоякой форме, в виде текущей координаты точки, движущейся по кривой, и в виде переменного элемента множества чисел, соответствующих точкам данного координатного отрезка. А сама «Геометрия» Декарта состоит из трех книг. Первая – «О задачах, которые можно построить, пользуясь только кругами и прямыми линиями», начинается с кратких разъяснений общих принципов. Затем следуют правила составления уравнений геометрических кривых.

Природа говорит с нами на языке математики. Вернее сказать, природа обращается к нам сразу на многих диалектах единого математического языка. Мы называем эти диалекты арифметикой, геометрией, алгеброй или математическим анализом, но не всегда чувствуем их единство, а многих диалектов мы еще не знаем.

Следующее открытие связано с именем Кеплера.

Иоганн Кеплер (1571–1630) вошел в большую науку в 1600 году, когда императорский астроном Тихо Браге принял его на работу в Пражскую обсерваторию. Тщательно наблюдая за движением планет среди звезд в течение 30 лет, Браге накопил огромный запас точных данных, но не мог привести их в единую систему. Он быстро отверг давнюю геоцентрическую модель Птолемея и недавнюю гелиоцентрическую модель Коперника (в которой сохранилась система эпициклов, введенных Гиппархом). Но каковы истинные траектории полета планет в пространстве? В каком режиме они движутся по этим кривым? Браге поручил Кеплеру разобраться в движении Марса: оно более всего противоречит здравому смыслу, ибо временами Марс вдруг останавливается среди планет и пятится назад.

Кеплер сразу догадался: если орбита Марса не может быть окружностью, то, скорее всего, она – эллипс. Кажущееся движение Марса вспять можно объяснить просто: Солнце находится не в центре эллипса, а сдвинуто куда-то вбок. Куда? Видимо, в фокус эллипса, самую замечательную точку, связанную с этой кривой. Но в каком режиме движется Марс по своему эллипсу, можно выяснить только путем громоздких расчетов. Эта работа заняла у Кеплера 8 лет; он испытал и отверг около 20 разных гипотез, пока не нашел (в 1609 году) истинную: за равные отрезки времени вектор, соединяющий Солнце с Марсом, заметает в плоскости их общего движения секторы равной площади.

Чтобы справиться с огромным объемом вычислений, Кеплеру пришлось сделать два замечательных изобретения. Во-первых, он научился заменять умножение многозначных чисел сложением их логарифмов. Во-вторых, Кеплер научился вычислять путь, пройденный планетой за данное время, по известной (переменной) скорости планеты.