Лит.: Костов И., Минералогия, пер. с англ., М., 1971.
М. Д. Дорфман.
Нитраты целлюлозы
Нитра'ты целлюло'зы, нитроцеллюлоза, азотнокислые сложные эфиры целлюлозы общей формулы [СбН7О2(ОН)3-х (ONO2) x] n, где х может меняться от 1 до 3; белая волокнистая рыхлая масса, очень напоминающая целлюлозу. Важнейшая характеристика Н. ц. — степень замещения или содержание азота, в значительной степени определяющие физико-механические, химические и технологические свойства этого полимера. Практическое применение имеют следующие основные виды Н. ц. (в скобках указано содержание азота): коллоксилин (10,7—12,2%), пироксилин № 2 (12,2—12,5%) и пироксилин № 1 (13,0—13,5%); известен также особый вид Н. ц., открытый Д. И. Менделеевым и названный им пироколлодием (12,4%). Плотность Н. ц. 1,58—1,65 г/см2, средняя степень полимеризации коллоксилина 150—600 (молярная масса 37 500—150 000), пироксилинов 1000—2000 (молекулярная масса 250 000—500 000). Растворимость Н. ц. зависит от содержания азота; растворителем для всех служит ацетон; Н. ц. нерастворимы в воде и неполярных растворителях (например, в бензоле, четырёххлористом углероде, бензине); они не стойки к действию кислот и щелочей; разбавленные минеральные кислоты вызывают медленный гидролиз, а щелочи омыляют и разрушают их. Н. ц. обладают низкой атмосферо- и термостойкостью. При нагревании они начинают разлагаться уже при 40—60 °С, причём скорость разложения быстро возрастает с повышением температуры. При быстром нагревании распад Н. ц. может закончиться вспышкой и взрывом. Введение в Н. ц. стабилизаторов (дифениламина, производных мочевины) позволяет повысить их стойкость.
Н. ц. получают нитрованием разрыхлённой и высушенной целлюлозы нитрующей смесью. Полученный продукт многократно промывают водой, раствором соды, опять водой и, если необходимо, обезвоживают (например, этиловым спиртом). Товарный продукт хранят с содержанием 20—40% воды или спирта.
Назначение Н. ц. определяется содержанием в них азота. Коллоксилин применяют для производства целлулоида, пластмасс (этролов), в небольших количествах для кино- и фотоплёнки, для получения нитролаков, нитроклеев и нитроэмалей. Пироксилины применяют для получения бездымного пороха, динамитов и др. взрывчатых веществ. Основной недостаток Н. ц. — горючесть, поэтому они вытесняются ацетатами целлюлозы и синтетическими полимерами.
Н. ц. — одни из первых полимерных материалов, впервые полученные французским химиком А. Браконно в 1832.
Лит.: Роговин 3. А., Химия целлюлозы, М., 1972.
В. Н. Кряжев.
Нитриды
Нитри'ды, соединения азота с более электроположительными элементами, главным образом с металлами. По строению и свойствам Н. подразделяются на три группы:
1) солеобразные Н. металлов I и II групп периодической системы Менделеева, легко разлагающиеся водой с образованием аммиака:
Mg3N2 + 6H2O = 3Mg(OH)2 + 2NH3
2) ковалентные Н. неметаллов, а также Al, Ga, In, Tl. Эти Н. (особенно AlN, BN, Si3N4) исключительно устойчивы к химическим воздействиям, тугоплавки, термостойки, являются диэлектриками или полупроводниками; особенно важен бора нитрид; 3) металлоподобные Н. переходных металлов (наиболее многочисленная группа). Их строение определяется тем, что атомы азота внедряются в кристаллическую решетку металла; такие Н. во многих случаях не отвечают правилам формальной валентности и представляют нестехиометрические соединения (ZrN, Mn4N, W2N) с широкими областями гомогенности, в пределах которых происходит существенное изменение их свойств. Такие Н. во многом похожи на металлы — имеют высокие электро- и теплопроводность, тугоплавки (например, TiN и HfN плавятся соответственно при 3200 и 3380 °С); отличаются от металлов высокой твёрдостью, хрупкостью, непластичностью. Металлоподобные Н. обладают высокой химической стойкостью.
Н. образуются на поверхности металлов под действием азота или аммиака при 500—900 °С; нитридные покрытия придают металлическим изделиям твёрдость, износостойкость, коррозионную стойкость. Изделия из Н. применяются в технике высоких температур, газотурбостроении, энергетике, космической технике. Некоторые металлоподобные Н. — сверхпроводники (например, NbN и MoN проявляют сверхпроводимость соответственно при 15,6 К и 12 К); полупроводниковые и электроизоляционные свойства Н. используются в технике полупроводников.
Лит.: Самсонов Г. В., Нитриды, К., 1969.
Г. В. Самсонов.
Нитрилы
Нитри'лы карбоновых кислот, цианистые соединения, RC ≡ N, органические производные синильной кислоты. Их структурные изомеры — изонитрилы.
Первый представитель ряда — цианистый водород HCN (формонитрил). Низшие алифатические Н. — жидкости с неприятным запахом, высшие — твёрдые кристаллические вещества, простейший ароматический Н. бензонитрил — бесцветная жидкость с приятным запахом горького миндаля; некоторые свойства Н. приведены в таблице.
Нитрил | tкип, °С | Плотность при 20°С, г/см3 |
Ацетонитрил CH3CN | 81,6 | 0,783 |
Пропионитрил C2H5CN | 98 | 0,785 |
Бутиронитрил C3H7CN | 118 | 0,794 |
Стеаронитрил C17H35CN | 357 | 0,818* |
Бензонитрил C6H5CN | 190,7 | 1,0102** |
* При 41°С. ** d1515.
Н. восстанавливаются до первичных аминов RNH2; Н. с ненасыщенными углеводородными остатками легко полимеризуются. Например, в промышленности полимеризацией акрилонитрила получают полиакрилонитрильные волокна. Формонитрил, или синильную кислоту, HCN, применяют в производстве акрилонитрила, метакрилонитрил — для получения органического стекла. Под действием кислот и щелочей Н. гидролизуются до карбоновых кислот (II):
Реакцию можно остановить на стадии образования амида карбоновой кислоты (I). Обратная реакция, т. е. отщепление воды от амида или аммониевой соли карбоновой кислоты — один из основных способов получения Н.; другой способ — взаимодействие галогеналкилов с цианидом калия KCN.
Нитриты
Нитри'ты металлов, соли азотистой кислоты HNO2. Бесцветные кристаллические вещества; термически менее устойчивы, чем нитраты. Характер разложения зависит от катиона [например, 2Ba (NO2)2 = BaO + Ba (NO3)2 + NO2 + 1/2 N2; 2Ag NO2 = AgNO3 + Ag + NO]. Почти все Н. хорошо растворимы в воде (исключение — AgNO2). Н. могут проявлять как окислительные, так и восстановительные свойства. Получают Н. действием смеси NO и NO2 на окислы и гидроокиси, восстановлением нитратов и по реакциям обмена. Применяют главным образом в производстве азокрасителей. Важнейшие Н. описаны в соответствующих статьях (Натрия нитрит и др.).
Нитрификация
Нитрифика'ция (от нитр... и лат. facio — делаю), процесс микробиологического превращения аммонийных солей в нитраты — основную форму азотного питания растений. Протекает в почве и воде водоёмов. Н. завершает минерализацию органических соединений азота, начатую аммонификацией, и является показателем плодородия почвы. Вызывается хемосинтезирующими нитрифицирующими бактериями. Протекает в 2 стадии. Сначала ион аммония окисляется бактериями первой стадии Н. в нитрит-ион, а затем нитрит-ион окисляется бактериями второй стадии Н. в нитрат-ион. Н. идёт при рН почвы 5—9. Нитрификаторы — аэробные организмы, и при недостатке в почве воздуха Н. приостанавливается. Хорошая обработка почвы, улучшая её аэрацию, усиливает Н.