Рис. 1. Схема полусумматора: х, у — слагаемые; 5 — сумма; с — перенос в старший разряд.
Суммация
Сумма'ция (от позднелат. summatio — сложение) в физиологии, слияние эффектов ряда стимулов, быстро следующих друг за другом (временная С.) или одновременных (пространственная С.), возникающих в возбудимых образованиях (рецепторах, нервных клетках, мышцах). Впервые С. описал И. М. Сеченов (1868), наблюдавший при определённых условиях ритмического раздражения задержку появления и последующее усиление рефлекторных реакций. Временная С. происходит при интервалах между стимулами, ограниченных периодом подпороговых или следовых (см. Следовые реакции ) сдвигов мембранного потенциала в сторону деполяризации (при развитии возбуждения ) и гиперполяризации (при развитии торможения ). Временная С. обеспечивает необходимую длительность реакций. Она может поддерживаться кольцевой связью нейронов. Пространственная С., непрерывно меняющаяся, проявляется в одновременном возбуждении или торможении как многих нейронов различных участков мозга, так и многочисленных синапсов на одном нейроне. Способствуя усилению отдельных реакций, С. вместе с тем играет важную роль в осуществлении координированных реакций организма. В мышце пространственная С. вызывает усиление сокращений, связанное с увеличением количества возбуждённых двигательных единиц (то есть групп волокон, иннервируемых одним нейроном), а временная С. ведёт к образованию тетануса путём слияния следующих друг за другом одиночных сокращений.
А. Н. Кабанов.
Суммирование
Сумми'рование расходящихся рядов и интегралов, построение обобщённой суммы ряда (соответственно значения интеграла ), не имеющего обычной суммы (соответственно значения). Расходящиеся ряды могут получаться при перемножении условно сходящихся рядов, при разложении функций в ряд Фурье, при дифференцировании и интегрировании функциональных рядов и т. д. Часто встречаются расходящиеся ряды и интегралы в теории электромагнитного поля и др. вопросах современной физики. Во многих случаях расходящиеся ряды и интегралы можно просуммировать, то есть найти для них сумму (значение) в обобщённом смысле, обладающую некоторыми из основных свойств обычной суммы (значения) сходящегося ряда (интеграла). Обычно требуется, чтобы из того, что ряд
суммируется к S, а ряд суммируется к Т, следовало, что ряд суммируется к lS + lT, а ряд суммируется к S — ао . Кроме того, чаще всего рассматриваются регулярные методы С., то есть методы, суммирующие каждый сходящийся ряд к его обычной сумме. В большинстве методов С. расходящийся ряд рассматривается в известном смысле как предел сходящегося ряда. А именно, каждый член ряда (1)умножается на некоторый множитель ln (t) так, чтобы после умножения получился сходящийся ряд
(2)с суммой d(t). При этом множители ln (t) выбираются так, чтобы при каждом фиксированном n предел ln (t) при некотором непрерывном или дискретном изменении параметра t равнялся 1. Тогда члены ряда (2) стремятся к соответствующим членам ряда (1). Если при этом d(t) имеет предел, то его называют обобщённой суммой данного ряда, соответствующей данному выбору множителей (данному методу С.). Например, если положить ln (t) = 1 При n £ t и ln (t) = 0 при n > t и брать t ® ¥, то получится обычное понятие суммы ряда; при ln (t ) = tn для t < 1 и t ® 1 получается метод Абеля — Пуассона. Часто указывается не результат умножения членов ряда на ln (t), а соответствующие изменения частичных сумм ряда. Например, в методе средних арифметических Чезаро полагают
,где
, .Этот метод соответствует выбору ln (m ) = (m - n + 1)/(m + 1) при n £ m и ln (m ) = 0 при n > m . Если положить
, ,, ,и если существует
, то говорят, что ряд суммируется к А методом Чезаро k -го порядка. С ростом k возрастает сила метода Чезаро, то есть расширяется множество рядов, суммируемых этим методом. Всякий ряд, суммируемый методом Чезаро какого-либо порядка, суммируется и методом Абеля — Пуассона и притом к той же сумме. Например, ряд 1— 1 + 1 —... + (—1) n-1 +... суммируется методом Абеля — Пуассона к значению 1 /2 , так как, .Метод Чезаро даёт то же значение, так как
s2n = 1, s2n+l = 0, s2n = (n + 1)/(2n + 1),
s2n+1 = 1 /2 ,
.Методы Чезаро и Абеля — Пуассона применяются в теории тригонометрических рядов для нахождения функции по её ряду Фурье, так как ряд Фурье любой непрерывной функции суммируется к этой функции методом Чезаро первого порядка, а тем самым и методом Абеля — Пуассона. В 1901 Г. Ф. Вороной предложил метод С., частными случаями которого являются все методы Чезаро. Пусть pn ³ 0, p = , ; обобщённой суммой ряда, по Вороному, называется предел
.Метод Вороного регулярен, если
.В 1911 немецкий математик О. Теплиц нашёл необходимые и достаточные условия, которым должна удовлетворять треугольная матрица ||атn || (где атn = 0 при n > m ) для того, чтобы метод С., определяемый формулой
, был регулярен. Польский математик Х. Штейнхауз обобщил эти условия на случай квадратных матриц.В теории аналитических функций важную роль играет метод суммирования Бореля, позволяющий аналитически продолжить функцию, заданную степенным рядом, за границу круга сходимости. Важный метод С. тригонометрических рядов был предложен С. Н. Бернштейном и немецким математиком В. Рогозинским. Бернштейн использовал этот метод для получения сходящихся интерполяционных процессов.