Возбуждение внутримолекулярных колебаний при вынужденном комбинационном рассеянии (гиперзвука при ВРМБ и т.д.) происходит в тех случаях, когда В. р. с. протекает в веществе, состояние которого близко к равновесному. При этом частота w¢ рассеянного света оказывается меньше частоты w падающего излучения: w = w — Dw (стоксов процесс). Однако при В. р. с. возможно не только возбуждение движения микрочастиц, но и его подавление, если первоначальное состояние вещества не является равновесным. При этом = w + Dw (антистоксов процесс).

  Если при В. р. с. рассеянное излучение выходит из рассеивающего объёма без отражений от его границ, то рассеянный свет, как и в случае спонтанного рассеяния света, является некогерентным (см. Когерентность ), а угловое распределение рассеянного света зависит от формы рассеивающего тела, например, для удлинённых форм рассеянное излучение сосредоточено главным образом вдоль его оси. Если же рассеивающее тело помещено в оптический резонатор , то в результате многократных отражений рассеянного света от зеркал в резонаторе формируется когерентное излучение на частоте рассеяния w¢ (это достигается лишь при значениях интенсивности падающего света, превышающих некоторое пороговое значение). Направленность рассеянного излучения в этом случае определяется конфигурацией резонатора.

  Поскольку при В. р. с. интенсивности падающего и рассеянного излучений велики (106 —109вт/см2 ), то нередко в веществе одновременно с В. р. с. проявляются и другие нелинейные эффекты, например, параметрические процессы, приводящие к появлению излучения с целым набором новых частот wn = w + n Dw, где n = ±1, ±2, ±3... (рис. 1 ). Компоненты с n ³ 1 называются антистоксовыми компонентами, а с n £ —2 — высшими стоксовыми компонентами. Излучение этих компонент после выхода из рассеивателя происходит преимущественно вдоль поверхностей конусов с различными (для различных компонент) малыми углами (1—10°) при вершинах. В изотропной среде оси всех конусов совпадают с направлением рассеиваемого луча. В кристаллах эти конусы могут иметь различную ориентацию и каждая компонента может излучаться в двух конусах. На фотоплёнке, расположенной за исследуемым образцом перпендикулярно прошедшему лучу частоты w, образуются кольца, соответствующие различным компонентам В. р. с. (рис. 2 ).

  Так как интенсивность рассеянного света при В. р. с. может быть порядка интенсивности падающего излучения, то рассеянное излучение, в свою очередь, может стать источником В. р. с. Развитие этого процесса может также привести к возникновению целого ряда компонент, частоты которых будут совпадать с параметрическими частотами wn . Однако по другим свойствам они существенно отличаются от параметрического излучения. Иногда в веществе одновременно возникают два (или больше) вида В. р. с., влияющих друг на друга.

  В. р. с. используется для эффективного преобразования интенсивного излучения лазера в излучение с большей яркостью и другими характеристиками; для возбуждения интенсивного гиперзвука и других видов движения микрочастиц; для изучения микроструктуры вещества.

  Лит.: Луговой В. Н., Введение в теорию вынужденного комбинационного рассеяния, М., 1968; Старунов В. С., Фабелинский И. Л., Вынужденное рассеяние Мандельштама — Бриллюэна и вынужденное энтропийное (температурное) рассеяние света, «Успехи физических наук», 1969, т. 98, в. 3; Зельдович Б. Я., Собельман И. И., Вынужденное рассеяние света, обусловленное поглощением, там же, 1970, т. 101, в. 1.

  В. Н. Луговой.

Большая Советская Энциклопедия (ВЫ) - i008-pictures-001-289323870.jpg

Рис. 1. Спектр рассеянного света при вынужденном комбинационном рассеянии: w — частота падающей волны.

Большая Советская Энциклопедия (ВЫ) - i009-001-221654781.jpg

Рис. 2. Пространственная картина излучения первой и второй антистоксовых компонент при вынужденном комбинационном рассеянии в монокристалле кальцита; центральное пятно соответствует прошедшему через кальцит световому лучу частоты w; два неконцентрических кольца меньших диаметров соответствуют двум конусам излучения первой антистоксовой компоненты (частота w + Dw); два неконцентрических кольца больших диаметров соответствуют двум конусам излучения второй антистоксовой компоненты (частота w + 2Dw).

Вынужденные колебания

Вы'нужденные колеба'ния, колебания, возникающие в какой-либо системе под действием переменной внешней силы (например, колебания мембраны телефона под действием переменного магнитного поля, колебания механической конструкции под действием переменной нагрузки и т.д.). Характер В. к. определяется как характером внешней силы, так и свойствами самой системы. В начале действия периодической внешней силы характер В. к. изменяется со временем (в частности, В. к. не являются периодическими), и лишь по прошествии некоторого времени в системе устанавливаются периодические В. к. с периодом, равным периоду внешней силы (установившиеся В. к.). Установление В. к. в колебательной системе происходит тем быстрее, чем больше затухание колебаний в этой системе.

  В частности, в линейных колебательных системах при включении внешней силы в системе одновременно возникают свободные (или собственные) колебания и В. к., причём амплитуды этих колебаний в начальный момент равны, а фазы противоположны (рис. ). После постепенного затухания свободных колебаний в системе остаются только установившиеся В. к.

  Амплитуда В. к. определяется амплитудой действующей силы и затуханием в системе. Если затухание мало, то амплитуда В. к. существенно зависит от соотношения между частотой действующей силы и частотой собственных колебаний системы. При приближении частоты внешней силы к собственной частоте системы амплитуда В. к. резко возрастает — наступает резонанс . В нелинейных системах разделение на свободные и В. к. возможно не всегда.

  Лит.: Хайкин С. Э., Физические основы механики, М., 1963.

Большая Советская Энциклопедия (ВЫ) - i009-001-209080402.jpg

График установления вынужденных колебаний.

Выпадение промежуточных функций

Выпаде'ние промежу'точных фу'нкций, частный случай преобразования органа в филогенетическом развитии, при котором происходит усиление его главной функции за счёт выпадения промежуточной. Этот тип изменения органов установлен А. Н. Северцовым . Примером В. п. ф. может служить образование у млекопитающих и человека нового причленения нижней челюсти через зубную кость непосредственно к черепу (что усилило её функцию) вместо причленения через квадратную и сочленовную кости (переместившиеся в среднее ухо); это дало возможность пережёвывать пищу во рту.

Выпадение прямой кишки

Выпаде'ние прямо'й кишки', частичный или полный выворот прямой кишки через задний проход наружу. У детей встречается чаще, чем у взрослых. К В. п. к. предрасполагают недостаточное развитие подвешивающего кишку аппарата, слабость мышц тазового дна, отлогое положение крестца и копчика и др. Непосредственно В. п. к. могут вызвать тяжёлый физический труд (особенно у ослабленных людей), травмы живота и таза, заболевания кишечника, тяжёлые роды и т.п. У детей В. п. к. происходит иногда при длительных поносах, запорах, сильном и продолжительном кашле и пр. Субъективные ощущения проявляются незначительными болями во время дефекации; иногда В. п. к. сопровождается недержанием газов и кала. Лечение: у детей — устранение причины, вызвавшей В. п. к., нормализация стула, общеукрепляющая терапия; у взрослых эффективно только хирургическое лечение.

  В. п. к. у животных. Чаще наблюдается у свиней и собак, реже у крупного рогатого скота и лошадей. Предрасполагающие факторы: понижение мышечного тонуса прямой кишки, расслабление сфинктера ануса, слабость животного и др. Непосредственные причины В. п. к. — частые и сильные потуги при родах, введение в прямую кишку раздражающих веществ. Выпавшую часть кишки обмывают холодным дезинфицирующим и вяжущим раствором, вправляют её и суживают анальное отверстие кисетным швом.