АНДРЕЙ НИКОЛАЕВИЧ КОЛМОГОРОВ. (1903-1987)

А.Н. Колмогоров родился в семье агронома в г.Тамбове. В 1925 году окончил Московский университет. С 1929 года - старший научный сотрудник НИИ математики и механики при МГУ и одновременно — зав. кафедрой математики в Индустриально-педагогическом институте им. К. Либкнехта (в дальнейшем влившемся в МГПИ им. В.И. Ленина). С 1931 года Колмогоров — профессор МГУ. В разные годы своей жизни он работал зав. отделением математики мехмата МГУ, деканом этого факультета, зав. кафедрой теории вероятностей и зав. лабораторией вероятностных и статистических методов, зав. кафедрой математической статистики и кафедры математической логики МГУ. Научно-педагогическую работу в МГУ совмещал с деятельностью в Математическом институте им. Стеклова АН СССР.

Колмогорову принадлежат работы в сферах теорий функций действительного переменного, конструктивной логики и математики, топологии, механики, теории дифференциальных уравнений, функционального анализа. Основополагающее значение имеют его работы по теории вероятностей. Внес вклад в разработку теории стрельбы, статистических методов контроля массовой продукции, проблем математического образования в высшей и средней школе.

Б.Л. Яшин

Фрагменты текста печатаются по изданию:

Колмогоров А.Н. Математика в ее историческом развитии. М.,1991.

Предмет математики

Связь математики с естествознанием, оставаясь по существу не менее тесной, приобретает теперь более сложные формы. Большие новые теории возникают не только в результате непосредственных запросов естествознания или техники, а также из внутренних потребностей самой математики. Таково в основном было развитие теории функций комплексного переменного, занявшей к середине XIX в. центральное положение во всем математическом анализе. <...> (С. 60)

В более непосредственной и непрерывной зависимости от запросов механики и физики происходило формирование векторного и тензорного анализа. Постепенно все более обнаруживалось, что именно с точки зрения механики и физики «скалярные» величины, послужившие исходным материалом для формирования понятия действительного числа, являются лишь частным случаем величин многомерных. <...> (С. 61)

Таким образом, как в результате внутренних потребностей математики, так и новых запросов естествознания круг количественных отношений и пространственных форм, изучаемых математикой, чрезвычайно расширяется: в него входят отношения, существующие между элементами произвольной группы, векторами, операторами в функциональных пространствах, все разнообразие форм пространств любого числа измерений и т.п. При таком широком понимании терминов «количественные отношения» и «пространственные формы» приведенное в начале статьи определение математики применимо и на новом современном этапе ее развития. (С. 61-62)

<...> пространственные формы можно рассматривать как частный вид количественных отношений, если этому последнему термину придать достаточно широкое толкование, так что с этой точки зрения включение в определение математики особого упоминания «пространственных форм» является лишь указанием на относительную самостоятельность геометрических отделов математики. Количественные отношения (в общем философском понимании этого термина) характеризуются, в отличие от качественных, лишь своим безразличным отношением к конкретной природе тех предметов, которые они связывают. Поэтому они и могут быть совершенно отделены от их содержания как от чего-то безразличного для дела <...>. Можно сказать, что количественные отношения суть чистые отношения, сохраняющие от конкретной действительности, от которой они отвлечены, только то, что предусмотрено в их определении. Из этих общих свойств количественных отношений легко объясняются основные особенности математики как науки о такого рода отношениях. Ее по преимуществу дедуктивный характер объясняется тем, что все свойства чистых отношений должны содержаться в самом их определении. Широкая применимость каждой математической теории в различных по конкретному содержанию областях естествознания и техники объясняется тем, что математика изучает только отношения, безразличные к конкретной природе связываемых ими объектов. В создании методов, достаточно гибких, чтобы изучать весьма общие и разнообразные количественные отношения (в указанном выше широком понимании), и заключается принципиальная новизна современного периода развития математики. <...> (С. 62-63).

Вопросы обоснования математики.

Роль теории множеств и математической логики Чрезвычайное расширение предмета математики привлекло в XIX в. усиленное внимание к вопросам ее «обоснования», т.е. критического пересмотра ее исходных положений (аксиом), построения строгой системы определений и доказательств, а также критического рассмотрения логических приемов, употребляемых при этих доказательствах. Важность такого рода работы становится особенно понятной, если учесть то, что было выше сказано об изменившемся характере взаимоотношений между развитием математической теории и ее проверкой на практическом материале, доставляемом естествознанием и техникой. При построении обширных и иногда весьма абстрактных теорий, охватывающих, помимо тех частных случаев, которые привели к их созданию, огромный материал, получающий конкретные применения лишь в перспективе десятилетий, ждать непосредственных сигналов о недостаточной корректности теории в форме зарегистрированных ошибок уже нельзя. Вместо этого приходится обратиться ко всему накопленному опыту работы человеческой мысли, который как раз и суммируется в вырабатываемых постепенно наукой требованиях к «строгости» доказательств. В соответствии с этим работы по строгому обоснованию тех или иных отделов математики справедливо занимают значительное место в математике XIX и XX веков. В применении к основам анализа (теория действительных чисел, теория пределов и строгое обоснование всех приемов дифференциального и интегрального исследования) результаты этой работы с большей или меньшей полнотой излагаются в настоящее время в большинстве учебников (даже чисто практического характера). Однако до последнего времени встречаются случаи, когда строгое обоснование возникшей из практических потребностей математической теории запаздывает. Так в течение долгого времени уже на рубеже XIX и XX вв. было с операционным исчислением, получившим весьма широкие применения в механике и электротехнике. Лишь с большим запозданием было построено логически безупречное изложение математической теории вероятностей. И в настоящее время еще отсутствует строгое обоснование многих математических методов, широко применяемых в современной теоретической физике, где много ценных результатов получается при помощи незаконных математических приемов, дающих, например, иногда правильный ответ лишь «с точностью» до заведомо ошибочного множителя, поправляемого из посторонних данному «математическому выводу» соображений, или при помощи отбрасывания в сумме слагаемых, обращающихся в бесконечность и т.п.

Только к концу XIX в. сложился стандарт требований к логической строгости, остающийся и до настоящего времени господствующим в практической работе математиков над развитием отдельных математических теорий. Этот стандарт основан на теоретико-множественной концепции строения любой математической теории. С этой точки зрения любая математическая теория имеет дело с одним или несколькими множествами объектов, связанных между собой некоторыми отношениями. Все формальные свойства этих объектов и отношений, необходимые для развития теории, фиксируются в виде аксиом, не затрагивающих конкретной природы самих объектов и отношений. Теория применима к любой системе объектов с отношениями, удовлетворяющей положенной в ее основу системе аксиом. В соответствии с этим теория может считаться логически строго построенной только в том случае, если при ее развитии не используется никаких конкретных, не упомянутых в аксиомах свойств изучаемых объектов и отношений между ними, а все новые объекты или отношения, вводимые по мере развития теории сверх упомянутых в аксиомах, формально определяются через эти последние.