Замечательно, что свойства (1) и (2) не согласуются с любой локальной реалистической моделью (т. е. с любой разновидностью устройств рассматриваемого типа)! Предположим, что у нас есть такая модель, E-машину следует приготовить для каждого из возможных измерений А, В или С. Заметам, что если бы ее следовало готовить только дам получения вероятностного ответа, то P-машина (в соответствии со свойством (1)) не могла бы достоверно давать результаты измерения, не согласующиеся с результатами измерения E-машины. Действительно, обе машины должны давать свои ответы, определенным образом приготовленные заранее, на каждое из трех возможных измерений. Предположим, например, что эти ответы должны быть ДА, ДА, ДА, соответственно, для настроек А, В, С; тогда правая частица должна быть приготовлена так, чтобы давать ответы НЕТ, НЕТ, НЕТ при соответствующих трех настройках. Если же вместо этого приготовленные ответы левой частицы гласят: ДА, ДА, НЕТ, то ответами правой частицы должны быть НЕТ, НЕТ, ДА Все остальные случаи по существу аналогичны только что приведенным. Попытаемся теперь выяснить, согласуется ли это со свойством (2). Наборы ответов ДА, ДА, ДА / НЕТ, НЕТ, НЕТ не слишком многообещающи, так как дают 9 случаев несоответствия и 0 случаев соответствия при всех возможных парах настроек А/А', А/В', А/С', В/А' и т. д. А как обстоит дело с наборами ДА, ДА, НЕТ / НЕТ, НЕТ, ДА и тому подобными ответами? Они дают 5 случаев несоответствия и 4 случая соответствия. (Чтобы убедиться в правильности последнего утверждения, произведем подсчет случаев: Д/Н, Д/Н, Д/Д, Д/Н, Д/Н, Д/Д, Н/Н, Н/Н, Н/Д. Мы видим, что в 5 случаях ответы не согласуются и в 4 случаях согласуются.) Это уже гораздо ближе к тому, что требуется для свойства (2), но еще недостаточно хорошо, так как случаев несоответствия ответов должно быть столько же, сколько случаев соответствия! Для любой другой пары наборов возможных ответов, согласующихся со свойством (1), мы снова получили бы соотношение 5 к 4 (за исключением наборов НЕТ, НЕТ, НЕТ / ДА, ДА, ДА, дам которых соотношение было бы хуже — снова 9 к 0). Не существует набора приготовленных ответов, который могли бы дать квантово-механические вероятности. Локальные реалистические модели исключаются![164]
Эксперименты с фотонами: проблема для специальной теории относительности?
Мы должны спросить, существуют ли реальные эксперименты, которые подкрепляют эти удивительные квантовые ожидания? Только что описанный точный эксперимент — гипотетический, он никогда не был осуществлен на самом деле. Но были осуществлены похожие эксперименты, в которых использовалась поляризация пары фотонов, а не спин массивных частиц со спином 1/2. Кроме этого различия проведенные эксперименты не отличались в принципе от описанного выше гипотетического эксперимента — за исключением того, что фигурировавшие в них углы были вдвое меньше углов дам частиц со спином 1/2 (так как спин фотона равен 1, а не 1/2). Поляризации пар фотонов были измерены в нескольких различных комбинациях направлений, и результаты оказались в полном соответствии с предсказаниями квантовой теории, и не согласовывались ни с какой локальной реалистической моделью!
Наиболее точные и убедительные экспериментальные результаты, полученные к настоящему времени, принадлежат Алену Аспекту [1986] и его коллегам из Парижа[165]. Эксперименты Аспекта обладают еще одной интересной особенностью. «Выбор» способа измерения поляризаций фотонов определялся только после испускания фотонов, когда они уже находились в полете. Таким образом, если мы мысленно представим себе некоторое нелокальное «влияние», распространяющееся от детектора одного фотона к фотону, находящемуся на противоположной стороне, и сигнализирующее о направлении, в котором экспериментатор намеревается измерить направление поляризации приближающегося фотона, то придем к заключению, что это «влияние» должно распространяться быстрее света! Ясно, что любое реалистическое описание квантового мира, согласующееся с этими фактами, должно быть непричинным в том смысле, что влияние должно обладать способностью распространяться быстрее света!
Но в предыдущей главе мы видели, что в силу теории относительности, испускание сигналов, распространяющихся быстрее света, приводит к абсурдным ситуациям (и противоречит нашим представлениям о «свободе воли» и т. д.; см. Глава 5. «Релятивистская причинность и детерминизм»). Это определенно справедливо, однако нелокальные «влияния», возникающие в мысленных экспериментах типа ЭПР, не таковы, чтобы их можно было использовать для отправления сообщений (по той самой причине, как это нетрудно понять, что это могло бы приводить к абсурдным ситуациям). (Подробное доказательство того, что такие «влияния» не могут быть использованы для испускания сигналов и передачи сообщений, было дано Гирарди, Римини и Вебером [1980].) Бесполезно знать, что фотон поляризован «либо вертикально, либо горизонтально» (или, наоборот, «либо под углом 60°, либо 150°») до тех пор, пока экспериментатор не информирован, какая из альтернатив соответствует действительности. Именно эта часть «информации» (т. е. альтернативные направления поляризации) распространяется быстрее света («мгновенно»), тогда как информация о том, в каком из двух направлений действительно поляризован фотон, доходит до экспериментатора медленнее и через обычный сигнал, сообщающий результат первого измерения поляризации.
Хотя эксперименты типа ЭПР не противоречат (в обычном смысле передачи сообщений сигналами) причинности специальной теории относительности, существует определенный конфликт с духом теории относительности в нашей картине физической реальности. Попытаемся выяснить, каким образом реалистическая точка зрения, основанная на использовании понятия вектора состояния, применима к описанному выше эксперименту типа ЭПР (с фотонами). Когда два фотона разлетаются, вектор состояния описывает пару фотонов, действующих как единое целое. Ни один из фотонов в отдельности не обладает объективным состоянием: квантовое состояние применимо только к двум фотонам вместе. Ни один из фотонов в отдельности не обладает направлением поляризации: поляризация — комбинированное свойство двух фотонов вместе. При измерении поляризации одного из этих фотонов вектор состояния изменяется скачком, так что неизмеряемый фотон обретает определенную поляризацию. Когда затем измеряется его поляризация, то правильные значения вероятности получаются с помощью обычных квантовых правил, применяемых к поляризационному состоянию фотона. Такой подход позволяет получать правильные ответы; именно так мы обычно применяем квантовую механику. Но такая точка зрения по существу нерелятивистская. Действительно, два измерения поляризации разделены пространственноподобным интервалом. Это означает, что каждое измерение лежит вне светового конуса другого, как точки R и Q на рис. 5.21. Вопрос о том, какое из этих измерений произведено первым, не имеет реального физического смысла, а зависит от состояния движения «наблюдателя» (рис. 6.32).