Характерная черта интуиционизма Брауэра состоит в отрицании закона «исключенного третьего». Этот закон говорит о том, что отрицание ложности некоторого выражения эквивалентно утверждению истинности этого выражения. (Или в принятой символике: ~ (~ P) <=> P, отношение, которое нам уже встречалось ранее.) Наверное, Аристотель был бы очень недоволен, столкнувшись с отрицанием настолько логически «очевидного» факта! С общепринятых позиций здравого смысла закон «исключенного третьего» может рассматриваться как самоочевидная истина: если утверждение о том, что нечто ложно, само неверно, то это нечто должно быть непременно справедливым! (На этом законе основана математическая процедура «доказательства от противного», упомянутой в прим. 53 подглавы «Неразрешимость проблемы Гильберта») Но интуиционисты считают допустимым отвергать справедливость этого закона. Основная причина здесь в том, что они занимают иную позицию по отношению к понятию существования, требуя, чтобы перед признанием существования математического объекта предъявлялось его конкретное (мысленное) построение. То есть, для интуиционалиста «существование» означает «конструктивное существование». В математическом доказательстве, использующем принцип «доказательства от противного», сперва выдвигается некая гипотеза, ложность которой затем устанавливается путем обнаружения противоречий, к которым приводят следствия из этой гипотезы. Эта гипотеза может принимать форму утверждения о том, что математический объект с требуемыми свойствами не существует. Когда это приводит к противоречию, то в обычной математике делается вывод о том, что данный объект да, существует. Но подобное доказательство, само по себе, не содержит руководства для построения такого объекта. Такое существование для интуициониста существованием отнюдь не является; и именно на этом основании они отказываются признавать закон «исключенного третьего» и процедуру «доказательства от противного». Сам Брауэр был совершенно неудовлетворен таким неконструктивным подходом к понятию существования[80]. Без указания реально осуществимого метода построения, говорил он, такая теория существования будет бессмысленной. В логике Брауэра нельзя сделать заключение о существовании объекта, исходя из ложности утверждения о его несуществовании!

По моему мнению, несмотря на похвальное стремление искать «конструктивное» решение вопроса о математическом существовании, интуиционизм, исповедуемый Брауэром, все же является слишком радикальным. Брауэр впервые опубликовал свои идеи в 1924 году, более чем за десять лет до работ Тьюринга и Черча. Теперь, когда понятие конструктивности — в терминах теории Тьюринга о вычислимости — может изучаться в общепринятых рамках математической философии, уже нет необходимости впадать в крайности, как к тому нас призывает Брауэр. Мы можем исследовать конструктивность как самостоятельный предмет, отдельный от вопроса математического существования. Если мы последуем путем интуиционизма, то будем вынуждены отказаться от использования очень мощных приемов доказательства в математике, заметно ограничивая и лишая силы сам предмет.

Я не хочу излишне подробно останавливаться на разнообразных трудностях и кажущихся абсурдностях, к которым приводит интуиционистский подход; но упоминание некоторых проблем может оказаться полезным. Один из примеров, к которому часто обращается для иллюстрации Брауэр, касается дробной части числа π:

3,14152653589793….

Существует ли двадцать последовательных семерок где-нибудь в этой части, т. е.:

π = 3,14152653…

…77777777777777777777…,

или же нет? В обычных математических терминах все, что мы можем сказать на сегодняшний день, это то, что они либо существуют, либо нет — и мы не знаем, какая из этих возможностей верна! Казалось бы, вполне безобидное утверждение. Однако правомерность утверждения «последовательность из двадцати семерок либо существует где-то в дробной части числа π, либо нет» будет отвергаться интуиционистами до тех пор, пока не получится установить (некоторым приемлемым с точки зрения интуиционизма конструктивным образом), что такая последовательность действительно существует, или же что такой последовательности нет! Прямого подсчета было бы достаточно для того, чтобы доказать, что данная последовательность действительно существует в дробной части π, но для доказательства невозможности ее существования потребовалась бы математическая теорема. Пока ни один компьютер не в состоянии просчитать дробную часть π с такой точностью, чтобы определить наличие там искомой последовательности. Можно было бы, с вероятностной точки зрения, предположить ее существование, однако, даже если бы компьютер вычислял каждую секунду, скажем, по 1010 цифр, то для нахождения этой последовательности потребовалось бы предположительно от ста до тысячи лет. Мне представляется гораздо более вероятным, что существование такой последовательности будет однажды установлено скорее математически, чем путем прямых вычислений (возможно, как побочный результат более глобального и интересного исследования) — хотя не исключено, что это будет сделано неприемлемым для интуиционистов способом!

Данная проблема не имеет для математики особого значения и приведена лишь как наглядный пример. Брауэр, с позиций радикального интуиционизма, сказал бы, что в настоящее время утверждение «где-то в дробной части числа π существует двадцать последовательных семерок» не является ни справедливым, ни ложным. Если когда-либо в дальнейшем будет установлен конкретный результат — посредством вычислений или путем (интуиционистского) математического доказательства — то тогда утверждение станет «истинным» или «ложным», соответственно. Сходный пример представляет собой и «последняя теорема Ферма». Вновь, согласно крайнему интуиционизму Брауэра, это утверждение не может быть сегодня признано ни ложным, ни истинным, но возможно, что его значение будет определено в будущем. По-моему, такая субъективность и «конъюнктурность» понятия математической истины просто неприемлема. Действительно, вопрос, будет ли — а если будет, то когда — официально признана «доказанность» некоторого математического результата, является весьма субъективным. Математическая истина не должна подчиняться такому «общественно-зависимому» критерию. Помимо этого, опираться на понятие математической истины, зависящее от времени — это, мягко говоря, наиболее неудобный и неудовлетворительный подход для математики, которую предполагается использовать для достоверного описания физического мира. Не все интуиционисты придерживаются таких радикальных взглядов, как Брауэр. И все же точка зрения интуиционистов является, бесспорно, крайне неудобной, даже когда она родственна идеям конструктивизма. Немногие современные математики строго исповедуют чистый интуиционизм, даже если бы единственной причиной этого была бы его ограниченность относительно типов математических рассуждений, которые он позволяет использовать.

Я коротко описал три основных направления в современной математической философии: формализм, платонизм и интуиционизм. Я не скрываю, что практически целиком отдаю предпочтение платонистской точке зрения, согласно которой математическая истина абсолютна и вечна, является внешней по отношению к любой теории и не базируется ни на каком «рукотворном» критерии; а математические объекты обладают свойством собственного вечного существования, не зависящего ни от человеческого общества, ни от конкретного физического объекта. Я попытался привести аргументы в пользу этой точки зрения в этом и предыдущем разделах, а также в конце третьей главы. Я надеюсь, что читатель готов следовать за мной и далее в этих рассуждениях, которые будут очень важны для понимания многих положений в дальнейшем.

Теоремы геделевского типа как следствие результатов, полученных Тьюрингом

В моем изложении теоремы Геделя я опустил многие детали и к тому же оставил в стороне то, что относилось к неразрешимость вопроса о непротиворечивости системы аксиом и было исторически наиболее важной частью его доказательства. Моя задача состояла не в том, чтобы акцентировать внимание на «проблеме доказуемости непротиворечивости аксиом», столь важной для Гильберта и его современников; я стремился показать, что специфическое утверждение Геделя — которое нельзя ни подтвердить, ни опровергнуть исходя из аксиом и правил вывода рассматриваемой формальной системы — оказывается с очевидностью верным, если опираться в наших рассуждениях на интуитивное понимание смысла применяемых процедур.