«Яркий образ Алексея Николаевича всегда останется в памяти всех, кто его знал, имя его дорого каждому русскому ученому и никогда не будет забыто кораблестроителями и моряками всего мира. Нельзя тем, кто его лично знал, забыть эту исключительную личность, в которой сочеталась чрезвычайная доброжелательность ко всем и в то же время непримиримость, прямота и резкость суждений с мягкостью юмора, с серьезным тщательным изучением каждой стоявшей перед ним проблемы.
Высокое чувство долга и преданности своему народу, присущее А. Н. Крылову, никогда не изгладится из памяти тех, кто имел счастье его видеть и знать.
Жизнь и творчество Алексея Николаевича навсегда войдут в историю нашей страны»[82].
«В… умении сочетать темы и идеи, казалось бы, совершенно не связанные между собой, и притом сочетать их так, чтобы от этих сопоставлений получилась наибольшая польза для науки и ее применений, — одно из проявлений великой и особенной мудрости Алексея Николаевича; глубочайшей же основой последней служила уверенность во всепобеждающей силе человеческого разума, высшие достижения которого он видел у Ньютона, в созданной его гением системе астрономического и механического знания»[83].
«Алексей Николаевич Крылов, уйдя от нас, навсегда оставил для нашего труда и успехов вдохновляющий пример, при сравнении с которым многие достижения окажутся малыми и скромными. Спасибо покойному за это стимулирующее сравнение! Спасибо ему за многие яркие впечатления, которыми он украсил воспоминание о прошлом!»[84]
Николай Григорьевич Чеботарев (1894–1947)
Свою будущую профессию — математику — Николай Григорьевич Чеботарев определил довольно рано, будучи еще гимназистом младших классов. В «Математической автобиографии» он писал: «Помню, как еще в Елисаветграде (я переехал из Елисаветграда в Каменец-Подольск в 1907 году, перейдя в IV класс) сестра моей бабушки, тетя Маша, с убеждением говорила, что из меня выйдет математик. Может быть, эти слова сыграли роль внушения. С другой стороны, весьма вероятно, что к занятиям математикой меня толкали объективные обстоятельства. Дело в том, что согласно твердым воспитательным принципам моих родителей все наши действия, и в том числе развлечения, строго регламентировались. Математика была единственным убежищем, куда не мог проникнуть контроль старших и где я был себе полным хозяином. Всякая другая наука требовала бы расходов на оборудование, а у меня карманных денег не было»[85].
Самостоятельная работа над книгой была стихией гимназиста Чеботарева. Особенно много он занимался математикой. Уже в 4-м классе он самостоятельно изучил весь учебник геометрии Киселева и прорешал все наиболее трудные задачи из задачника Рыбкина.
В 15 лет, при переходе в 6-й класс, он увлекся «малой теоремой Ферма», формулировку которой услышал из уст одной гимназистки. Эту теорему после долгих размышлений доказал самостоятельно. Доказательство пришло ему на ум однажды ночью в летнее каникулярное время в Крыму, когда москиты не давали спать.
Еще на школьной скамье он выработал привычку думать и размышлять над прочитанным, выискивать новые проблемы и пытаться решить их самостоятельно.
Ряд сформулированных и решенных им проблем оказался, как позднее выяснил он сам, уже давно решенным в математической литературе.
Он не переставал заниматься математикой даже будучи больным. А болел он часто. Так, в то памятное лето 1919 года, когда Николай решил знаменитую «малую теорему Ферма», он отбил себе почку и проболел целый месяц. Но и лежа в постели, Чеботарев не переставал изучать логарифмы, бином Ньютона и неопределенные уравнения. В то лето он долго думал над задачей о распределении простых чисел в натуральном ряду, но, как признался он сам, ни к чему не пришел.
В шестом классе гимназист Николай Чеботарев соревновался по математике с лучшим учеником этого класса Симой Гершманом. Сима давал ему читать «Задачи на построение» Александрова и подолгу рассказывал о свойствах конических сечений (кривые, получаемые сечением круглого конуса плоскостями), вычитанных им в «толстой» алгебре Маракуева.
Схваченные на лету свойства конических сечений Коля Чеботарев применяет для решения задачи о трисекции угла (задача о делении произвольно данного угла на три равные части) и придумывает для этой цели «трисектограф» собственной конструкции.
«Впоследствии, — заявляет Чеботарев, — я увидел свой способ изложения в учебнике Адлера по геометрическим построениям»[86].
Новые проблемы, с которыми он встречался, требовали все новых и новых обширных и глубоких знаний. Нужны были книги. Летом 1910 года по дороге в Крым Коля Чеботарев со своим отцом остановился на несколько дней в Одессе. Он затащил отца в книжный магазин Суворина и выбрал для себя несколько книг по дифференциальному и интегральному исчислению. Однако отец выразил сомнение, сможет ли гимназист понять эти книги. Не в состоянии доказать отцу противное и имея в виду его острую нужду в деньгах, Коля Чеботарев с болью в душе отказался от облюбованных им книг. Его покупка ограничилась двумя дешевенькими книгами, а именно: учебником Пржевальского по аналитической геометрии и брошюрой Лобачевского «О началах геометрии», изданной с примечаниями Желтухина.
В то же лето с жадностью «проглотил» первую книгу, усвоил самые первые начала аналитической геометрии, в которых он уже тогда чувствовал острую нужду для решения некоторых вопросов математики, возникших у него.
Что касается брошюры Лобачевского «О началах геометрии», то она для шестнадцатилетнего гимназиста оказалась «не по зубам». Он осилил ее только на другой год во время летних каникул. По этому поводу он писал: «Правда, я так и не сумел разобрать по этой статье вывода формулы для угла параллельности. Но, пользуясь этой формулой как данной, я научился выводить формулы, связывающие стороны и углы треугольников в геометрии Лобачевского, а также решать более сложные задачи. В частности, я заинтересовался вопросом о том, какая кривая получится в результате выпрямления окружности, а затем предельной окружности в плоскости Лобачевского»[87].
Результаты исследования, связанные с изучением указанной выше брошюры Лобачевского, составили, по словам Чеботарева, его первую научную работу, помещенную впоследствии (1919) в журнале Казанского студенческого математического кружка под названием «Формула геометрии Лобачевского».
Окончив успешно гимназию, Николай Чеботарев поступил в Киевский университет с твердым решением сделаться математиком.
Будучи студентом, он успешно сочетает учение с научно-исследовательской работой и скоро обращает на себя внимание профессора Д. А. Граве, знаменитого алгебраиста того времени.
Под руководством Граве он выполнил ряд научных работ и по окончании университета был оставлен на физико-математическом факультете «для приготовления к профессорскому званию».
В 1948 году Н. Г. Чеботареву, одному из крупнейших современных алгебраистов, члену-корреспонденту Академии наук СССР, профессору Казанского университета, посмертно присуждена Государственная премия I степени за исследование по теории алгебраических уравнений, изложенное в монографии «Проблема резольвент», опубликованной в 1947 году.
Проблема резольвент в кратких словах заключается в следующем. Как известно, радикал
является корнем двучленного уравнения хп—а = 0.