Фотомагнитоэлектрический эффект

Фотомагнитоэлектри'ческий эффе'кт, фотомагнитный эффект, фотогальваномагнитный эффект, то же, что Кикоина – Носкова эффект .

Фотометр

Фото'метр (от фото... и ...метр ), прибор для измерения каких-либо из фотометрических величин , чаще других – одной или нескольких световых величин . При использовании Ф. осуществляют определённое пространственное ограничение потока излучения и регистрацию его приёмником излучения с заданной спектральной чувствительностью . Освещённость измеряют люксметрами , яркость – яркомерами , световой поток и световую энергию – с помощью фотометра интегрирующего . Приборы для измерения цвета объекта называют колориметрами . Если в качестве приёмника используется глаз, Ф. называются визуальными, или зрительными, если же применяется какой-либо физический приёмник, Ф. называются физическими. Оптический блок Ф., иногда называемый фотометрической головкой, содержит линзы, светорассеивающие пластинки, ослабители света , светофильтры, диафрагмы (см. Диафрагма в оптике) и приёмник излучения. Чаще всего в Ф. с физическими приёмниками поток излучения преобразуется в электрический сигнал, регистрируемый устройствами типа микроамперметра, вольтметра и т.д. В импульсных Ф. (см. Фотометрия импульсная ) применяют регистрирующие устройства типа электрометра , запоминающего осциллографа , пикового вольтметра. В визуальном Ф. равенство яркостей двух полей сравнения, освещаемых по отдельности сраниваемыми световыми потоками, устанавливается глазом, который располагается у окуляра фотометрической головки.

  Оптические схемы Ф. (рис. ) для определения размерных фотометрических величин обеспечивают постоянство или изменение по определённому закону фактора геометрического . (О принципах абсолютной градуировки Ф. см. ст. Фотометрия . ) Для Ф. с абсолютной градуировкой характерны большие систематические погрешности измерений (осуществить их с погрешностью менее 5% затруднительно). Квалифицированные специалисты в хорошо оборудованных лабораториях обычно выполняют измерения с погрешностями от 10% до 20%. Оплошности в самой постановке измерений могут вызвать увеличение погрешностей до 50% и более.

  Точность Ф. для измерений отношения потоков излучения (пропускания коэффициента и отражения коэффициента ) более высока. Они строятся по одноканальной и двухканальной оптическим схемам. В одноканальном Ф. измеряется относительное уменьшение потока излучения при установке образца на пути пучка лучей. В двухканальном Ф. ослабление потока излучения образцом осуществляют, сравнивая потоки в измерительном и т. н. опорном каналах. Для уравнивания потоков излучения в каналах применяются регулируемые диафрагмы, клин фотометрический и др. подобные устройства. Коэффициенты пропускания и отражения светорассеивающих образцов измеряют также в интегрирующих Ф. О спектрофотометрах см. в ст. Спектральные приборы .

  Лит. см. при статьях Фотометрия , Фотометрия импульсная .

  А. С. Дойников.

Большая Советская Энциклопедия (ФО) - i010-001-252052550.jpg

Принципиальные оптические схемы фотометров для измерения: а — освещенности и экспозиции, а также (с привлечением закона квадратов расстояний) силы света и освечивания; б — силы света и освечивания (т. н. телецентрическим методом); в — яркости и интеграла импульса яркости (с применением фокусирующей оптической системы); г — яркости (с применением габаритной диафрагмы). И — источник света; П — приемник излучения с исправляющими его спектральную чувствительность светофильтрами и ослабителями; О — объектив с фокусным расстоянием f; D — диафрагма, устанавливаемая в фокальной плоскости (б) или в плоскости изображения источника (в); Da — апертурная диафрагма; Dr — габаритная диафрагма; a и b — угловые размеры фотометрируемых пучков лучей.

Фотометр интегрирующий

Фото'метр интегри'рующий , шаровой фотометр, прибор, позволяющий определять световой поток по одному измерению. Основной частью Ф. и. является фотометрический шар (шар Ульбрихта), который представляет собой полый шар (или полое тело иной формы) с внутренней поверхностью, окрашенной неселективной белой матовой краской. Диаметр шара должен значительно превышать размеры фотометрируемых источников света, вследствие чего для измерения световых потоков, например люминесцентных светильников, строят Ф. и. диаметром до 5 м. Освещённость любой точки шара, защищенной небольшим экраном от прямых лучей горящего в шаре источника, пропорциональна световому потоку этого источника (в общем случае – потоку излучения ). Освещённость экранированного участка измеряется тем или иным способом, например с помощью встроенного в шар фотоэлемента. Ф. и. широко применяется при световых и цветовых измерениях, в частности для измерения световых потоков ламп и светильников, отражения коэффициентов и пропускания коэффициентов .

  Лит.: Тиходеев П. М., Световые измерения в светотехнике. (Фотометрия), 2 изд., М. – Л., 1962.

Фотометр шаровой

Фото'метр шаро'вой, то же, что фотометр интегрирующий .

Фотометрическая лампа

Фотометри'ческая ла'мпа, электрический источник света, служащий для воспроизведения определённого числа единиц той или иной световой величины . Применяется при фотометрических и спектральных измерениях в ультрафиолетовой (УФ), видимой и ближней инфракрасной (ИК) областях спектра (см. Фотометрия , Спектрометрия ).

  Для воспроизведения световых единиц и при световых измерениях используют светоизмерительные (СИ) фотометрические лампы накаливания – Ф. л. силы света (СИС) и Ф. л. светового потока (СИП). СИС выпускают с номинальными значениями силы света от 5 кд до 1500 кд, СИП – со значениями светового потока от 10 лм до 3500 лм. Конструктивно СИ лампы бывают пустотные, с телом накала в виде прямой нити, работающие при цветовой температуреТцв = 2360 К, и более мощные, газонаполненные (газополные), с телом накала в виде спирали, Тцв = 2800–2854 К.

  В зависимости от точности воспроизведения световых единиц СИ лампы подразделяются на рабочие, с квадратичным отклонением результата измерения относительно его среднего значения не свыше 3%, и образцовые 1-го, 2-го и 3-го разрядов с отклонением соответственно 0,4%, 0,6% и 1%. Некоторые СИ лампы накаливания используются в качестве вторичных световых эталонов .

  Воспроизведение мгновенных (пиковых) значений силы света в импульсе и освечивания осуществляется при помощи импульсных газоразрядных источников света . Номинальные значения пиков силы света у выпускаемых в СССР шаровых (типа ИШО-1) и трубчатых (ИПО-75) Ф. л. составляют соответственно 3×105 и 106кд, а освечивания – 0,9 и 300 кд ×сек. Относительное квадратичное отклонение пиковой силы света в импульсах у этих Ф. л. не превышает 1,7%.

  Значения яркостной и цветовой температур в диапазоне от 800 до 3000 К в УФ, видимой и ближней ИК областях спектра воспроизводятся образцовыми и рабочими температурными Ф. л. накаливания с телом накала в виде нити, ленты или светящейся полости.