Тогда несколько его коллег по Болонскому университету решились на прямые действия. Скрыв лица под масками, они напали на Мальпиги и жестоко избили его, разграбили дом, сожгли многие бумаги, уничтожили лабораторию. Но микроскоп и открытия Мальпиги нельзя было уничтожить, и они продолжали верно служить науке, способствуя накоплению новых знаний. Самому Мальпиги также удалось выжить. Свои последние годы он провел в Риме в качестве лейб-медика папы Иннокентия XI.
Вскоре, совсем ненамного отстав от Мальпиги по времени, почти по тому же пути устремился другой первооткрыватель, Антон ван Левенгук. Этот удивительный голландец собрал микроскоп, используя собственноручно отшлифованные увеличительные стекла. Жизнь этого чрезвычайно разностороннего, талантливейшего человека поистине необыкновенна. До того, как всерьез заняться наукой, Левенгук был мелким торговцем галантерейными товарами. Он никогда не учился в университете, не изучал ни латыни, ни греческого, ни классических дисциплин. И этот самоучка благодаря необыкновенным природным способностям и глубокой любви к науке завоевал славу одного из самых выдающихся знатоков микроскопии в мире!
Для Левенгука, как и для Мальпиги, микроскоп не был просто волшебной игрушкой. Он считал, что работа с микроскопом требует строжайшей дисциплины. В 1673 году, спустя восемь лет после того, как Мальпиги впервые увидел эритроциты в человеческой крови, Левенгук обнаружил аналогичные клетки и в крови животных. Это открытие наглядно показало, что кровяные тельца не являются некими таинственными субстанциями, которые выделяют человека из ряда прочих живых существ. Эритроциты оказались непременной составной частью крови, независимо от того, в чьих жилах она течет.
Любознательный голландский экспериментатор предпринял попытку определить размеры красных кровяных телец и описать их строение. Результаты его измерений поразительно близки к истине. Учитывая, что диаметр красной кровяной клетки составляет примерно 0,0075 миллиметра, а толщина — 0,0025 миллиметра, можно только поражаться удивительному качеству работы, выполненной в те далекие дни, когда микроскоп находился еще на начальной стадии своего развития!
Левенгук изучал стенки сосудов, по которым происходит движение крови, и провел ряд экспериментов, чтобы установить скорость кровотока. Кроме того, он первым обнаружил бактерии и доказал, что они являются самостоятельными организмами. Сделанные им зарисовки бактерий появились на страницах английского научного журнала «Философские труды» в 1683 году. Именно тогда люди впервые увидели изображения микробов — этих прежде невидимых и неизвестных соседей, с которыми им приходится жить бок о бок.
По мере расширения масштабов научной работы, проводимой с помощью микроскопа, ученые в полной мере смогли оценить значение этого прибора и совершенствовать технические приемы его использования. Но едва они успевали разрешить одну какую-нибудь проблему, как возникали другие, решение которых требовало проведения новых экспериментов.
В свое время древнегреческим и александрийским анатомам случалось обнаруживать сосуды, содержавшие желтую или беловатую жидкость. Часто их принимали за нервы. Эти сосуды видел и описал Эразистрат, который имел несчастье на несколько тысячелетий опередить свое время.
23 июля 1622 года их заново открыл профессор Падуанского университета Гаспаре Азелли, производивший в присутствии нескольких друзей вскрытие собаки. Заметив в брюшной полости какие-то белые тяжи, Азелли вначале решил, что это нервы. Однако он тут же сообразил, что нервы кишечника, в котором были расположены таинственные тяжи, выглядят совсем по-другому, и перерезал один из них. Из надреза показалась беловатая жидкость. Душу Азелли переполнил восторг, и он, повернувшись к друзьям, воскликнул: «Эврика! Нашел!»
Но нашел Азелли отнюдь не то, что думал. По цвету появившейся жидкости он назвал найденные им сосуды млечными. Азелли решил, что эти сосуды несут продукты пищеварения в печень, где они, по-видимому, превращаются в кровь. Как выяснилось впоследствии, это не соответствовало действительности.
Примерно четверть века спустя, в 1648 году, молодой врач из Дьеппа, по имени Жан Пеке, который вел исследовательскую работу в университете Монпелье, установил, что содержимое сосудов с беловатой жидкостью не поступает в печень. Как показал Пеке, сосуды эти впадают в грудной проток, который в свою очередь соединен с крупной веной, несущей кровь к сердцу, — так называемой «непарной веной».
Еще через два года студент-медик Падуанского университета швед Улаф Рюдбек обнаружил те же сосуды в печени, причем они опять-таки впадали в грудной проток и в конце концов в «непарную вену».
Все сведения о сосудах с беловатой жидкостью удалось обобщить датскому анатому Томасу Бартолину в 1652 году. Он нашел их буквально во всех частях организма и заметил, что их содержимое всегда попадает в кровь. Так началась работа по описанию и определению функций лимфатической системы — этого притока Реки жизни и неотъемлемой части ее бассейна. Лимфа, которая по своему составу тождественна плазме крови, проникающей через стенки капилляров к клеткам, омывает ткани точно так же, как первозданное море омывало первые живые существа. Затем она оттекает по сосудам лимфатической системы и вновь возвращается в кровь.
Рис. 21, 22. Инструменты для кровопускания (XVIII век).
По мере своего развития человечество стремится проникнуть в наиболее сложные проблемы окружающего его мира, отбрасывая упрощенные схемы. Для характеристики своего мира и правивших им сил первобытный человек не нуждался в большом словарном запасе. В этом мире были добрые и злые демоны, белая и черная магия. Наш сегодняшний мир столь сложен, что средствами современного языка при всей его изощренности уже не удается описать многие явления. Например, эйнштейновское пространство-время нельзя представить себе наглядно, а описать его, не прибегая к помощи символических терминов, и подавно невозможно.
Точно так же составление схемы кровообращения не положило конец исследованиям Реки жизни, не упростило связанных с ней сложных проблем. Напротив, оно открыло неизвестные до сих пор области, поставило еще более трудные, чем прежде, задачи.
Глава XV
Над Рекой разливается свет
Годы, отделяющие конец эпохи Возрождения от начала промышленной революции, были периодом бурного развития Европы. По мере того как тонкая, но твердая оболочка феодализма постепенно начинала трещать под напором вышедшего из его глубин среднего класса, в самом обществе происходили глубокие сдвиги и перемены, которые высвобождали невиданные запасы творческой энергии.
С развитием промышленности и торговли неуклонно возрастал спрос на усовершенствованные орудия труда, новые виды транспорта и более надежные средства связи. Наука отзывалась на нужды эпохи, вырывая у природы ее секреты и обращая их на благо человека.
Так, например, астрономия оказывала существенную помощь кораблевождению. Физика, математика, химия и другие науки способствовали появлению новых образцов станков, пригодных для обработки металлов, эффективных источников энергии, более стойких красителей для текстильной промышленности, быстроходных кораблей и многому другому.
Лихорадка научных исследований и открытий охватила практически все слои общества. Обнаруженные учеными непостижимые чудеса становились темой оживленных дискуссий. И никто не удивлялся, если какой-нибудь ремесленник, мясник или булочник могли со знанием дела прокомментировать новейшие открытия, относящиеся к схеме кровообращения или к положению Солнца во Вселенной. Благодаря совершенствованию средств связи появилась невиданная ранее возможность для обмена мыслями, соображениями и критическими замечаниями.