Глава 5

ПРОШЛОЕ, НАСТОЯЩЕЕ И БУДУЩЕЕ ВСЕЛЕННОЙ

Известный московский астрофизик А.Л. Зельманов однажды так определил связь, существующую между прошлым, настоящим и будущим. «Прошлое – тот отрезок времени, относительно которого мы питаем иллюзию, будто знаем о нем все. Будущее – тот отрезок времени, относительно которого мы питаем иллюзию, что можем все в нем изменить по своему желанию. А настоящее – та граница, на которой будущее превращается в прошлое и одни иллюзии сменяются другими».

Разумеется, это шутка. Но, как говорится, в любой шутке есть доля правды. В данном случае она состоит в том, что прошлое, настоящее и будущее связаны между собой самым тесным образом: настоящее вырастает из прошлого, а будущее – из настоящего.

От настоящего – к прошлому

В тех случаях, когда речь идет о явлениях космического порядка, в соотношение времен вмешиваются еще и гигантские космические расстояния.

Как известно, лучи света, как и другие электромагнитные излучения, распространяются в пространстве со скоростью 300 тысяч километров в секунду. При такой скорости любые земные расстояния электромагнитные излучения преодолевают практически мгновенно. И, наблюдая на экране телевизора футбольный матч, который транслируется из Южной Америки, мы видим, как мяч влетел в ворота практически в тот же самый момент, что и зрители, присутствующие на стадионе…

Иное дело расстояния космические. Даже от ближайшей звезды – Солнца свет до Земли идет 8 минут 18 секунд. А от всех прочих гораздо дольше. Поэтому, отыскав на небе Полярную звезду, мы увидим ее такой, какой она была около 500 лет назад. Яркую летнюю звезду Денеб из созвездия Лебедя мы наблюдаем с опозданием на 600 лет, многие другие космические объекты – в еще более отдаленном прошлом.

Весной 1987 года в одной из ближайших галактик – Большом Магеллановом Облаке вспыхнула так называемая сверхновая звезда. Событие, представляющее огромный интерес для науки, и довольно редкое. И впервые астрономы получили возможность наблюдать подобную вспышку, да еще сравнительно близкую, с самого начала! Исследователям Вселенной – нашим современникам – крупно повезло! Но современниками вспышки они отнюдь не являются. Ведь от Земли до Большого Магелланового Облака около двухсот тысяч световых лет. Значит, вспышка, которую земляне увидели в 1987 году, в действительности произошла около 200 тысяч лет назад. И чем дальше расположен от нас тот или иной космический объект, тем в более далеком прошлом мы его наблюдаем. Благодаря этому при астрономических исследованиях астрономы могут непосредственно изучать события давным-давно минувших времен, черпать из этих наблюдений факты, необходимые для построения астрофизических теорий, проверять полученные теоретические выводы.

Есть, впрочем, еще одна «путеводная звезда», способная указать науке путь в «детство» Вселенной. Это связь между прошлым и настоящим, между теми космическими объектами, которые существовали в прошлом, и теми, которые существуют в настоящем.

В свое время на основе специальной теорий относительности, созданной Эйнштейном, была разработана релятивистская механика точки. Однако в течение довольно длительного времени не существовало релятивистской механики протяженных объектов.

Лишь около 20 лет назад появилось понятие «релятивистской струны» – одномерного протяженного объекта и были предприняты попытки описать его поведение с помощью специальной теории относительности.

Дальнейшие исследования показали, что в отличие от точки «струна» (астрофизики иногда называют ее стрингом или суперстрингом) обладает внутренними степенями свободы и является квантовым объектом. Однако при переходе от обычной теории описания поведения струны к квантовой выяснилось, что нарушается один из фундаментальных принципов современной физической теории, так называемый принцип инвариантности. Чтобы преодолеть эту трудность, приходится рассматривать струну в пространстве не 3-х, а 26 измерений…

На основе идеи релятивистских струн развилась современная адронная физика, то есть физика частиц, принимающих участие в сильных взаимодействиях. К числу таких частиц относятся протоны, нейтроны и более тяжелые частицы гипероны (все эти частицы называются барионами), а также мезоны с достаточно большими массами. Все адроны, согласно современным представлениям, построены из кварков.

В этой теории все физические взаимодействия сводятся уже к взаимодействиям не точечных, а протяженных объектов – к взаимодействию струн.

Кроме адронов и более легких частиц лептонов существуют еще и частицы-переносчики физических взаимодействий. Переносчиками электромагнитного взаимодействия служат фотоны, сильного – глюоны, слабого – бозоны.

Правда, нитеобразное расположение скоплений в сверхскоплениях просматривается более отчетливо, чем нитевидное расположение отдельных галактик в самих скоплениях. Но это скорее всего объясняется тем, что галактики расположены значительно ближе друг к другу, чем соседние скопления, и потому в значительно большей степени подвержены воздействию сил взаимного тяготения. За миллиарды лет гравитационное взаимодействие могло весьма существенно изменить первоначальную картину расположения звездных островов в пространстве скоплений. Так что нитевидное расположение галактик представляет собой вполне реальный факт.

Оригинальные идеи в физике ценятся необычайно высоко. Вспомним знаменитое высказывание одного из «зачинателей» современной физической науки Нильса Бора: эта теория недостаточно безумна, чтобы быть истинной… Но выдвинуть необычную идею еще мало. Перефразируя известную пословицу, можно сказать, что в физике «оригинальными идеями вымощен ад». Безумные идеи способны выдвигать и обитатели психиатрических лечебниц. Но природа – единственна и потому среди множества «безумных» идей истинной может быть только одна.

А это значит, что, выдвигая оригинальную физическую идею, необходимо обосновать ее жизнеспособность, доказать, что реальные события если не обязательно должны, то хотя бы могли развиваться именно таким путем.

Нитевидная «неоднородность», тончайшая нитевидная «складка», способная дать жизнь нитеобразным скоплениям и сверхскоплениям – какими свойствами она должна обладать? Скажем прямо, свойства эти поразительны. Материал, из которого состоят подобные нитевидные, тончайшие словно волос образования, или, как их сейчас принято называть, «космические струны», должен быть чудовищно плотным и массивным. Иначе эти неоднородности не смогли бы сконцентрировать вокруг себя и удержать вещество, необходимое для формирования тысяч галактик. Но и этого мало. Материал «струн» должен быть в высшей степени устойчивым, крепким, способным не только противостоять необычайно бурным процессам, протекающим в окружающей расплавленной ядерной магме, но и оставаться при этом «холодным», безразличным к испепеляющему жару ранней Вселенной.

Каким же образом подобные удивительные объекты в процессе расширения могли образоваться? Вот вопрос. Случайная «флюктуация», «всплеск», случайное отклонение от средней плотности? Ну, если бы речь шла об одной струне или, в крайнем случае, нескольких, подобное предположение было бы еще допустимо. Но ведь скоплений и сверхскоплений множество…

Значит, в расширяющейся Вселенной должен был действовать какой-то механизм, закономерно порождающий «космические струны». Это – очередное «знание о незнании», поскольку детали подобного механизма нам еще неизвестны. Можно только предположить, что струны – своеобразные остатки того первозданного вещества, из которого образовалась наша Вселенная.

Обсуждая удивительные свойства космических струн, физики нередко говорят о «запаянном» в этих тончайших «жгутах» «первобытном» вакууме и о «высоконапряженном однородном вакуумном поле», о «первобытном правеществе». Но все это скорее эпитеты, своеобразные художественные образы, нежели точные физические характеристики. Чтобы добыть такие характеристики, астрофизикам совместно с физиками предстоит еще немало потрудиться. А вот последовательность событий, происходивших в ту эпоху, по крайней мере, чисто внешне можно себе представить и сейчас.