13.19. Есть ли соответствие между зональностью почв и растительного покрова?
Между зонами почв и растительности существует вполне определенное соответствие. С увеличением радиационного индекса сухости (см. 6.12) типы почв меняются в следующей последовательности: тундровые почвы, подзолы, бурые лесные почвы, желтоземы, красноземы и латеритные почвы, черноземы и черные почвы саванн, каштановые почвы, сероземы.
13.20. Чем объясняется возникновение пыльных вихрей над полями в летнее время?
Небольшие пыльные вихри – микросмерчи – возникают летом чаще всего у границы участков земной поверхности, получающих неодинаковое количество солнечного тепла, или, точнее, неодинаково нагреваемых солнечными лучами. Свежевспаханное поле и участок с зеленым травяным покровом, жнивье и луг обладают различной способностью отражать солнечные лучи, а следовательно, и различной способностью поглощать эти лучи. Разность температур на поверхности этих участков создает разность температур и воздуха над ними, а это может привести к возникновению приземных воздушных течений и образованию небольших вихрей, поднимающих с земли пыль и мусор, которые делают эти вихри хорошо заметными.
13.21. Как зависит применение агротехнических приемов от почвенно-климатических условий?
В зависимости от того, в каких климатических зонах находятся тс или иные сельскохозяйственные площади, применяются разные агротехнические приемы – или повышающие теплообеспеченность растений и ослабляющие вредное влияние избыточного увлажнения, или же направленные на улучшение влагообеспеченности. Но в отдельные годы условия погоды складываются так, что агротехнические приемы следует менять. Например, в полувлажной лесостепной зоне система агротехники, нацеленная в основном на сбережение и экономное расходование влаги, примерно раз в десять лет должна перестраиваться на ослабление вредного влияния избыточного увлажнения – об этом говорят статистические данные обеспеченности этой зоны осадками. Таким образом, сельское хозяйство страны требует гибкого применения приемов агротехники.
13.22. Что дает мульчирование почвы?
Мульчирование – покрытие почвы навозом, соломой, специальной бумагой или пленкой, то есть мульчой, – применяется для придания почве большей эрозийной устойчивости, снижения испарения воды и для повышения или понижения температуры почвы. Наиболее эффективным материалом для мульчирования являются светопрозрачные полиэтиленовые пленки, способствующие повышению температуры почвы днем на 6-9°C и снижению затрат тепла на испарение на 10-15%.
13.23. Зачем производится дефолиация растений?
Досрочное сбрасывание листьев растениями – дефолиация, вызываемая искусственно путем применения химических веществ, призвана изменить тепловой и радиационный режим поля. Например, прогрев почвы под хлопчатником после дефолиации резко возрастает, так как поглощение растениями радиации уменьшается втрое, кроме того, увеличивается температура надпочвенного слоя воздуха, что способствует ускорению раскрытия коробочек хлопчатника.
13.24. Каков метеорологический эффект насаждения лесных полос?
Лесные полосы уменьшают скорость ветра на 20-60% и способствуют повышению температуры воздуха в межполосном пространстве и температуры почвы у растений на 1-2°C. Кроме того, в межполосном пространстве увеличивается влажность воздуха, снижается испаряемость. За счет задержания осадков лесополосы обеспечивают дополнительное увлажнение полей на 20-40 мм в год.
13.25. Как влияет подъем культуры земледелия на зависимость сельского хозяйства от климата и погоды?
В целом с прогрессом науки и техники эта зависимость уменьшается, но взаимосвязь между урожайностью и метеорологическими условиями сохраняется. Условия погоды сильнее всего сказываются на урожайности интенсивно развивающихся растений, имеющих высокий уровень обмена веществ и энергии. Новые высокопродуктивные сорта культурных растений обладают повышенной чувствительностью к условиям среды и нуждаются в максимальной оптимизации водного, воздушного, теплового и пищевого режимов.
ПОГОДА И МИРОВОЙ ОКЕАН
Мировой океан представляет собой не только колоссальный резервуар воды, но и огромное хранилище запасов тепла, постоянно поступающего в атмосферу и тем самым определяющего условия погоды на Земле. Кроме того, океанская вода – активнейший поглотитель углекислого газа, содержащегося в атмосферном воздухе, и место обитания бесчисленного количества микроскопических водорослей, вносящих большой вклад в снабжение земной атмосферы кислородом (путем фотосинтеза). Следовательно, Мировой океан выполняет функции легких нашей планеты, способствует сохранению постоянного состава воздуха. Наконец, на поверхности Мирового океана в полярных областях Земли находятся морские льды, площадь которых составляет от 14 до 28 млн. км2 и подвержена значительным колебаниям в зависимости от сезона и состояния самого океана. В результате весь механизм атмосферной циркуляции, а следовательно и формирования земного климата и условий погоды, самым тесным образом связан с Мировым океаном. Колебания теплозапасов в любом из пяти океанов Земли, изменения интенсивности океанских течений, размеров площади морских льдов – все это неизбежно влечет за собой крупномасштабные изменения погоды, длительное время – на протяжении нескольких сезонов, а то и лет – ощущающиеся в тех или иных географических регионах. Поэтому изучение взаимодействия океана и атмосферы – одна из самых важных задач современной метеорологии и родственных ей наук. От успеха решения этой задачи зависит и возможность решения одной из самых трудных научных проблем нашего времени – проблемы долгосрочного предсказания погоды.
Академик Л. М. Бреховских называет сумму проблем, связанных с изучением океана, вызовом науке. Так велико количество требующих решения научных вопросов и так велико их значение для человечества в целом. Немалое место среди этих вопросов принадлежит метеорологии. Некоторые из них мы рассмотрим в этой главе.
14.1. Чем объясняется настойчивое стремление метеорологов ввести в задачу долгосрочного прогноза погоды учет состояния океанов?
Поскольку тепловые запасы атмосферы относительно невелики, то невелика и так называемая тепловая память атмосферы, то есть влияние ее текущего состояния на будущее состояние. Влияние это ограничивается 10 – 20 днями. Отсюда все трудности составления долгосрочных прогнозов погоды на основе анализа характеристик атмосферы в исходный момент времени.
Большие тепловые запасы океана обусловливают его большую тепловую память и способность, отдавая тепло атмосфере, длительно влиять на распространение в ней температуры, влажности и т. п. Вот поэтому идея использования данных о колебаниях теплозапасов вод океана для прогноза колебания состояния атмосферы в различные сезоны представляется перспективной и усиленно разрабатывается метеорологами в долгосрочном плане.