14.10. Чем определяется толщина морского льда?

Скорость нарастания морского льда зависит от температуры его поверхности, толщины снежного покрова на нем и интенсивности потока тепла из подстилающего слоя воды. Для условий Арктики советский ученый Н. Н. Зубов получил формулу для расчета толщины морского льда h (м):

h = -25+v(25+h0)2+8?F,

где h – конечная толщина морского льда; h0 – начальная толщина морского льда; ?F – сумма градусо-дней рассматриваемого морозного периода.

В Арктике ?F = 7000… 8000 в год, и в районах, где к концу лета лед стаивает, толщина сезонного ледяного покрова составляет примерно 2 м. Многолетний лед в Центральной Арктике достигает равновесной толщины (3-4 м) в возрасте 5-8 лет, когда годовой прирост становится равным летнему сезонному стаиванию (абляции). Антарктические морские льды – по преимуществу сезонные, однолетние, толщиной около 1,5 м. Многолетние льды в Антарктике встречаются редко (в основном узкой полосой в море Уэдделла).

14.11. Каковы скорость и направление дрейфа морских льдов?

Она составляет примерно 1/50 скорости ветра на высоте 2 м над поверхностью воды. Направление дрейфа льдов соответствует теоретическому направлению ветра при отсутствии влияния трения, то есть приблизительно под углом 45° вправо от действительного направления ветра (в южном полушарии – под тем же углом влево).

14.12. При каких условиях погоды возникают самые высокие волны на море?

Волнение моря является функцией скорости ветра, длины разгона волн и промежутка времени, в течение которого дует ветер. Таким образом, наибольшие волны возникают над участками поверхности океана, где градиенты атмосферного давления (его изменение на единицу расстояния в горизонтальном направлении) максимальные, то есть в глубоких длительно существующих циклонах. Широкую известность у моряков получили открытые пространства Южного океана между 40 и 60-й параллелями. Здесь высота волн достигает 15 и даже более 20 м и волнение океана носит очень устойчивый характер, оно практически никогда не прекращается, не стесняемое континентами и крупными островами, поскольку в южном полушарии вообще суши мало. Славится высокими волнами и северная часть Тихого океана, хотя волнения там не столь постоянны, как на южных участках Индийского, Тихого и Атлантического океанов (которые теперь принято обобщенно называть Южным океаном). В литературе есть указания на случаи волн в океане высотой более 30 м, но, по-видимому, это были волны иной природы.

Вопросы о погоде - pic_86.png

68. Выпуск радиозонда с палубы судна в океане. Фото И. Цигельницкого

Все сказанное выше о волнении на море относится к явлениям, по своей природе метеорологическим, и не распространяется на волны типа цунами, вызываемые подвижками земной коры, то есть имеющими совсем иное происхождение. Такие волны могут достигать высоты 32-35 м.

14.13. Существует ли связь между морскими течениями и режимом ветра?

Безусловно, существует, хотя она далеко не всегда явно выражена. Есть в океане мощные течения, направленные почти точно в соответствии с направлением преобладающих ветров (как, например, Гольфстрим в Атлантике, теплые воды которого устремляются с юго-запада на северо-восток вдоль «дороги циклонов», следующих от берегов Северной Америки к берегам Северной Европы). Однако есть и такие течения, воды которых перемещаются не строго в соответствии с направлением преобладающих ветров (например, холодное Лабрадорское течение или течения в проливах Босфор, Дарданеллы, в Керченском проливе).

Закономерность соответствия поверхностных течений в океанах направлению движения воздуха в нижней тропосфере заметна и в низких, и в высоких широтах. В Тихом океане по обе стороны от экватора с востока на запад направлены течения, связанные с пассатами обоих полушарий. В Ледовитом океане арктические льды дрейфуют вдоль изобар на средних картах давления, то есть в направлении преобладающих ветров. Следует при этом иметь в виду, что скорости движения воды и воздуха существенно различны; количество движения в океане в 230 раз меньше, чем в атмосфере. Кроме того, приводя в движение воды океана, атмосфера испытывает обратное влияние океана на состояние воздуха над его поверхностью, в том числе и на режим ветра.

14.14. Соответствует ли направление течения Гольфстрим направлению ветров над Атлантикой?

В целом примерно соответствует. Течение Гольфстрим направлено приблизительно параллельно изобарам среднего поля атмосферного давления над Атлантикой. Однако местами на направление течения влияет рельеф дна океана.

14.15. Какова температура воды в Гольфстриме?

Температура воды в Гольфстриме у берегов Флориды на поверхности океана около 26°C, в пределах Саргассова моря она лишь на несколько градусов выше температуры воды на соседних с течением участках океана. По мере продвижения на север и северо-восток температура Гольфстрима постепенно понижается, но остается достаточно высокой по сравнению с температурой океана вне этого течения. Так, в апреле на широте северного полярного круга в центральном участке течения она равна 20°C, тогда как в нескольких сотнях километров к западу она всего на несколько градусов выше нуля, а еще западнее уже находится кромка полярных льдов Гренландского моря. Скорость течения составляет примерно 7 км/ч, ширина стрежня течения в створе мыса Хаттерас – около 100 км.

14.16. Чем объясняется бурный характер Баренцева моря?

Баренцево море считается одним из самых штормовых в мире. На его акватории проходит граница очень контрастных воздушных масс, проникающих сюда из Западной Атлантики – теплых и влажных и из Центральной Арктики – очень холодных и относительно сухих. Это делает все атмосферные фронты над Баренцевым морем очень активными, циклоническую деятельность – весьма интенсивной, с глубокими циклонами и большими градиентами давления, порождающими сильные ветры и волнение (высотой более 3,5 м).

14.17. Что такое след тайфуна в океане?

Тропические циклоны, среди которых видное место занимают тайфуны западной части Тихого океана, оставляют за собой след не только на поверхности океана, но и в толще воды, до глубины примерно полукилометра, причем сохраняется он в течение нескольких недель. След этот незаметен для человеческого глаза, но хорошо выражен в инструментальных измерениях состояния океанской воды, и прежде всего – ее температуры. Дело в том, что вдоль пути следования тропического циклона происходит интенсивное испарение воды – тайфуны и ураганы черпают свою энергию с сильно нагретой поверхности океана. На процесс испарения затрачивается значительное количество тепла, которое затем отдается воздуху при конденсации поднимающегося вверх водяного пара в виде теплоты конденсации. Вода же в океане при этом охлаждается. Ветер и волны, поднятые тропическим циклоном, усиливают эффект охлаждения поверхностных вод, перемешивая более глубокие и холодные воды с поверхностными. По данным советских океанологов, наблюдавших тайфун Элла в Тихом океане, когда тайфун прошел над полигоном автоматических буйковых станций, то в полосе шириной несколько больше 100 км (соответствующей размерам тайфуна) температура воды понизилась на 2°C, а по обе стороны от этой полосы – повысилась в среднем на 3°C. Остается добавить, что такого рода следы оставляют за собой не только тайфуны, но и другие тропические циклоны. Детально изучить это явление впервые удалось в тайфуне, путь которого пришелся на район океанологических исследований советского научно-исследовательского судна «Академик Курчатов».