Таблица 12.2.Четыре силы природы вместе со связанными с ними частицами и их массами в единицах массы протона (в действительности имеется две W-частицы — одна с зарядом +1 и одна с зарядом ?1, — которые имеют одинаковую массу; для простоты мы пренебрегаем этими деталями и отмечаем каждую как W-частицу)

Взаимодействие (сила) Частица — переносчик силы Масса
Сильное Глюон 0
Электромагнитное Фотон 0
Слабое W; Z 86; 97
Гравитационное Гравитон 0

Итак, помимо обеспечения первого успешного подхода к соединению гравитации и квантовой механики, теория струн обнаруживает свою силу, обеспечивая единое описание для всей материи и всех взаимодействий. Это то утверждение, которое в середине 1980-х гг. выбило из колеи тысячи физиков; со временем они пришли в себя, и многие поменяли убеждения.

Почему работает теория струн?

До разработки теории струн путь научного прогресса был усеян неудачными попытками соединить гравитацию и квантовую механику. Так что же есть такого в теории струн, что позволило ей так сильно преуспеть? Мы описали, как Шварц и Шерк осознали, в значительной степени неожиданно для самих себя, что имеется специальный способ вибрации струны, который обладает точно такими свойствами, чтобы быть гравитоном, и, как они затем заключили, теория струн обеспечивает готовую схему для соединения двух теорий. Исторически в самом деле так и было, сила и перспективность теории струн действительно были поняты случайно; но как объяснение, почему струнный подход преуспевает там, где все другие попытки пасуют, оно оставляет желать лучшего. Рисунок 12.2 представляет конфликт между общей теорией относительности и квантовой механикой — на ультракоротких пространственных (и временных) масштабах буйство квантовой неопределённости становится настолько сильным, что гладкая геометрическая модель пространства-времени, лежащая в основе общей теории относительности, перестаёт работать — так что вопрос в следующем: как теория струн решает проблему? Как теория струн успокаивает буйные флуктуации пространства-времени на ультрамикроскопических расстояниях?

Главное новое свойство теории струн в том, что её основной ингредиент — не точечная частица (точка без размера), а объект, который имеет пространственную протяжённость. Это различие имеет ключевое значение для успеха теории струн в соединении гравитации и квантовой механики.

Буйство, показанное на рис. 12.2, возникает в результате применения принципа неопределённости к гравитационному полю; из принципа неопределённости следует, что на всё меньших и меньших масштабах флуктуации гравитационного поля будут всё больше и больше. На таких экстремально малых масштабах расстояний мы должны описывать гравитационное поле в терминах его фундаментальных составляющих, гравитонов, примерно так, как на молекулярных масштабах мы должны описывать воду в терминах молекул H 2O. На этом языке буйное волнение гравитационного поля должно мыслиться как большое количество гравитонов, дико носящихся туда-сюда, как частицы грязи и пыли, захваченные свирепым торнадо. Теперь, если бы гравитоны были точечными частицами (как представлялось в более ранних, неудачных попытках объединения гравитации и квантовой механики), рис. 12.2 точно отражал бы их коллективное поведение: чем меньше масштаб расстояний, тем больше волнение. Но теория струн меняет этот вывод.

В теории струн каждый гравитон есть вибрирующая струна — нечто, что не является точкой, но имеет размер порядка планковской длины (10 ?33см). {164} А поскольку гравитоны являются мельчайшими, наиболее элементарными составляющими гравитационного поля, не имеет смысла говорить о поведении гравитационных полей в масштабах меньше планковской длины. Точно так же, как разрешение вашего телевизионного экрана ограничено размером отдельных пикселов или зёрен, разрешение гравитационного поля в теории струн ограничено размером гравитонов. Таким образом, ненулевой размер гравитонов (и чего угодно другого) в теории струн устанавливает предел, грубо говоря, на уровне планковской длины, с точностью до которого может быть разрешено гравитационное поле.

Это понимание имеет жизненно важное значение. Неконтролируемые квантовые флуктуации, проиллюстрированные на рис. 12.2, возникают только тогда, когда мы рассматриваем квантовую неопределённость на произвольно коротких масштабах расстояний — масштабах короче планковской длины. В любой теории, основанной на точечных частицах нулевого размера, такое применение принципа неопределённости оправдано и, как мы видели на рисунке, это приводит нас к диким ландшафтам за пределами достижимости общей теории относительности Эйнштейна. Однако теория, основанная на струнах, включает встроенную защиту от отказов. В теории струн струны являются самыми мелкими составными частями, так что наше путешествие в ультрамикроскопическое подходит к концу, когда мы достигаем длины Планка — размера самих струн. На рис. 12.2 планковский масштаб представлен вторым сверху уровнем; как вы можете видеть, на таких масштабах флуктуации ткани пространства всё ещё остаются, так как гравитационное поле всё ещё подвержено квантовому дрожанию. Но эта дрожь достаточно мягкая, чтобы избежать неустранимого конфликта с общей теорией относительности. Точная математика, лежащая в основе общей теории относительности, должна быть модифицирована, чтобы включить эти квантовые колебания, но это может быть сделано, и математика остаётся осмысленной.

Таким образом, вводя ограничения, на сколько глубоко мы можем продвинуться, теория струн ограничивает величину флуктуаций гравитационного поля — и предел оказывается разумным ровно настолько, чтобы избежать катастрофического конфликта между квантовой механикой и общей теорией относительности. То есть теория струн смягчает антагонизм между двумя схемами и впервые оказывается способной соединить их.

Ткань космоса в области малого

Что это значит для ультрамикроскопической природы пространства и пространства-времени в более общем смысле? С одной стороны, это бросает вызов обычному представлению, что ткань пространства и времени непрерывна, — что вы можете всегда разделить расстояние между здесь и там или продолжительность между теперь и тогда пополам, и снова пополам, бесконечно деля пространство и время на всё более малые части. Вместо этого, когда вы доходите до планковской длины (до длины струны) и до планковского времени (до времени, которое требуется свету, чтобы преодолеть длину струны) и пытаетесь разделить пространство и время ещё, вы обнаруживаете, что это невозможно. Концепция «быть ещё меньше» теряет смысл, как только вы достигаете размера наименьшейсоставляющей космоса. Для точечных частиц нулевого размера это не приводит к ограничению, но поскольку струны имеют размер, для них это к ограничениям приводит. Если теория струн верна, обычные концепции пространства и времени, те рамки, в которые вложен весь наш повседневный опыт, просто неприменимы на масштабах меньше планковского масштаба — масштабах самих струн.

Что касается концепций, которые должны прийти на смену, по ним всё ещё нет консенсуса. Одна возможность, которая согласуется с изложенным выше объяснением того, как теория струн соединяет квантовую механику с общей теории относительности, заключается в том, что ткань пространства на планковском масштабе похожа на решётку или сетку, в которой «пространство» между линиями сетки находится вне границ физической реальности. Точно так же, как микроскопический муравей, гуляя по обычному кусочку ткани, будет перебираться с нити на нить, может быть, движение через пространство на ультрамикроскопических масштабах аналогично требует дискретных перескоков с одной «нити» пространства на другую. Время тоже может иметь зернистую структуру с отдельными моментами, тесно упакованными друг к другу, но не сливающимися в сплошной континуум. При таком понимании представление о всё более мелких пространственных и временных интервалах резко обрывается на планковском масштабе. Точно так же, как нет такой вещи, как американская монета достоинством меньше пенни, так и нет такой вещи, как расстояние меньше планковской длины или продолжительность короче планковского времени, если ультрамикроскопическое пространство-время имеет структуру сетки.