68
Я иногда обнаруживаю нежелание согласиться с теоретическим утверждением, что кусочки яичной скорлупы могли бы на самом деле собраться в целое яйцо. Но симметрия законов физики по отношению к обращению времени, как более подробно рассматривалось в предыдущем примечании, означает, что это то, что могло бы случиться. На микроскопическом уровне разбивание яйца есть физический процесс, затрагивающий различные молекулы, из которых состоит скорлупа. Скорлупа трескается, поскольку удар, которому подверглось яйцо, заставляет разделяться группы молекул. Если бы эти движения молекул происходили в обратном направлении, молекулы объединились бы снова, собрав скорлупу в первоначальную форму.
69
Чтобы не отклоняться от обсуждения современного понимания этих идей, я пропустил одну очень интересную историю. Собственные раздумья Больцмана по поводу энтропии существенно уточнялись в течение 1870-х – 1880-х гг., когда очень полезными оказались взаимодействия и обмен информацией с такими физиками, как Джеймс Клерк Максвелл, лорд Кельвин, Джозеф Лошмидт, Джозайя Уиллард Гиббс, Анри Пуанкаре, С. X. Бербери и Эрнест Цермело. Фактически, Больцман сначала думал, что он сможет доказать, что для изолированной физической системы энтропия всегда и абсолютно не уменьшается, но не что просто очень маловероятно получить такое уменьшение энтропии. Но возражения, выдвинутые этими и другими физиками, постепенно привели Больцмана к статистическому и вероятностному подходу к этой теме, к тому, который используется и сегодня.
70
Я говорю об издании романа «Война и мир» в серии «Библиотека современной классики» (Modern Library Classics) в переводе на английский Констанции Гарнетт, содержащем 1386 страниц текста.
71
Для склонного к математике читателя следует заметить, что поскольку числа могут стать столь велики, то энтропия на самом деле определяется как логарифм числа возможных перестановок — но эта деталь не имеет отношения к рассматриваемой проблеме. Однако, с принципиальной точки зрения, это важно, поскольку очень удобно, что энтропия является так называемой аддитивной величиной. Это означает, что если вы объедините две системы вместе, энтропия их совокупности есть сумма их индивидуальных энтропий. Это остаётся правильным только для энтропии в форме логарифма, так как число перестановок в этом случае задаётся произведением индивидуального числа перестановок подсистем, так что логарифм числа перестановок является аддитивной величиной.
72
Поскольку мы можем, в принципе, предсказать, где приземлится каждая страница, вы можете подумать, что имеется дополнительный элемент, который определяет расположение страниц: как вы будете собирать страницы вместе в аккуратную пачку. Это не имеет отношения к обсуждаемой физике, но в случае, если вас это беспокоит, представьте, что вы договорились подбирать страницы одну за одной, начиная с той, которая к вам ближе всего, затем подберёте ближайшую за этой страницу и т. д. (И, например, для определения ближайшей страницы вы можете договориться измерять расстояние до ближайшего угла страницы.)
73
Надежда преуспеть в расчёте движения даже нескольких страниц с точностью, требуемой для предсказания их порядка (с учётом применения некоторого алгоритма складывания в пачку, как в предыдущем примечании), на самом деле экстремально оптимистична. В зависимости от гибкости и веса бумаги такой сравнительно «простой» расчёт может оказаться за пределами сегодняшних вычислительных возможностей.
74
Вас может смутить фундаментальное отличие в определениях понятия энтропии для расположения страниц и для коллективов молекул. Расположения страниц дискретны — вы можете пересчитать их одно за другим, так что, хотя полное число возможностей может быть большим, оно конечно. В противоположность этому, движение и положение даже отдельной молекулы непрерывно — вы не можете пересчитать их одно за другим, так что тут (по крайней мере, в соответствии с классической физикой) имеется бесконечное число возможностей. Как же можно провести точный счёт перестановок молекул? Короткий ответ состоит в том, что это хороший вопрос, но один из тех, на которые найдены полные ответы, — поэтому, если этого достаточно, чтобы успокоить вашу тревогу, свободно пропускайте следующий текст. Более длинный ответ требует немного математики, так что без определённых знаний его, наверное, будет трудно понять. Физики описывают классическую многочастичную систему, привлекая фазовое 6 N-мерное пространство (где Nесть число частиц), в котором каждая точка обозначает все положения и скорости всех частиц (для каждой частицы требуется три числа для положения и три для скорости, в итоге получаем 6 N-мерное фазовое пространство). Существенный момент состоит в том, что фазовое пространство может быть разбито на такие области, что все точки данной области соответствуют конфигурациям скоростей и координат молекул, которые дают одинаковые макроскопические свойства всей системы. Если конфигурация молекул изменилась от одной точки в данной области фазового пространства к другой точке той же области, макроскопические свойства системы не изменятся. Теперь, вместо того чтобы пересчитывать число точек в данной области, — самая прямая аналогия подсчёта числа различных перестановок страниц, но которая, несомненно, привела бы к бесконечному результату, — физики определяют энтропию в терминах объёма каждой области в фазовом пространстве. Больший объём означает больше точек, а потому большую энтропию. А объём области, даже области в многомерном пространстве, есть нечто, чему можно дать строгое математическое определение. (С математической точки зрения необходимо выбрать нечто, именуемое мерой, и для склонного к математике читателя я замечу, что мы обычно выбираем меру, которая однородна по всем микросостояниям, совместимым с данным макросостоянием, — т. е. каждая микроскопическая конфигурация, связанная с данным набором макроскопических свойств, предполагается равновероятной.)
75
В частности, мы знаем один путь, на котором это может произойти: если несколькими днями ранее молекулы CO 2были в бутылке, тогда мы знаем из нашего обсуждения выше, что если сейчас вы одновременно замените на противоположные скорости всех молекул CO 2, а также каждой молекулы или атома, которые любым образом взаимодействовали с молекулами CO 2, и подождёте те же несколько дней, молекулы соберутся назад в бутылку. Но это обращение скорости — не та вещь, которую можно исполнить на практике, однако это может произойти по их собственному согласию. Я должен заметить, что это было доказано математически: если вы ждёте достаточно долго, то молекулы CO 2по своей собственной воле обязательно снова соберутся в бутылку. Результат, доказанный в 1800-е гг. французским математиком Жозе Лиувиллем, можно использовать для доказательства того, что известно как теорема о возвращении Пуанкаре. Эта теорема показывает, что если вы достаточно долго ждёте, то система с конечной энергией и ограниченная конечным пространственным объёмом (вроде молекул CO 2в закрытом помещении) будет возвращаться в состояние, как угодно близкое к её начальному состоянию (в нашем случае все молекулы CO 2соберутся в бутылке колы). Загвоздка в том, как долго вам придётся ждать, чтобы это случилось. Для систем с любым, даже малым числом составляющих теорема показывает, что вы, как правило, будете ждать намного дольше возраста Вселенной, пока составляющие по своему собственному согласию перегруппируются в их начальную конфигурацию. Тем не менее, с принципиальной точки зрения, интересно отметить, что любая пространственно ограниченная физическая система при бесконечном терпении и долговечности будет возвращаться к своей начальной конфигурации.