104

Космическое микроволновое излучение было открыто в 1964 г. учёными из Лаборатории Белла Арно Пензиасом и Робертом Вильсоном во время тестирования большой антенны, предназначенной для связи со спутниками. Фоновый шум, с которым столкнулись Пензиас и Вильсон, оказалось невозможным удалить (даже после того как они вычистили птичий помёт — «белый шум» — из внутренностей антенны), и благодаря ключевому прозрению Роберта Дике из Принстона и его студентов Петера Ролла и Дэвида Вилинсона, вместе с Джимом Пиблсом, в конце концов было понято, что антенна улавливала микроволновое излучение, которое произвёл Большой взрыв. (Важная работа в космологии, которая послужила основой для этого открытия, была выполнена раньше Георгием Гамовым, Ральфом Алфером и Робертом Германом). Как мы обсудим в последующих главах, фоновая радиация даёт нам подлинную картину Вселенной, когда ей было около 300 000 лет. В это время электрически заряженные частицы вроде электронов и протонов, сильно поглощавшие свет, объединились, сформировав электрически нейтральные атомы, которые, в общем, позволили свету путешествовать почти свободно. С тех самых пор этот древний свет — произведённый на ранних этапах жизни Вселенной — путешествовал беспрепятственно, и сегодня заполняет всё пространство микроволновыми фотонами.

105

Физическое явление, затронутое здесь, обсуждается в главе 11, и известно как красное смещение. Обычные атомы, такие как водород и кислород, испускают свет с длинами волн, которые хорошо известны из лабораторных экспериментов. Когда такие вещества входят в состав галактик, которые уносятся от нас прочь, длина волны испущенного ими света увеличивается, почти как увеличивается длина волны звука сирены полицейского автомобиля, который уносится прочь, приводя к понижению тона сирены. Поскольку красный свет — это свет с наибольшей длиной волны, который может быть виден невооружённым глазом, это растяжение света называется красным смещением. Величина красного смещения растёт с ростом скорости убегания, а потому, измеряя длины волн зарегистрированного света и сравнивая их с лабораторными результатами, можно определить скорость удалённого объекта. (На самом деле это один из видов красного смещения, он известен как эффект Допплера. Красное смещение может быть также вызвано гравитацией: длина волны фотонов увеличивается, когда они выкарабкиваются из гравитационного поля.)

106

Более точно, как отметит склонный к математике читатель, что частица массы m, находящаяся на поверхности шара радиуса Rс плотностью массы ?, ощущает ускорение d 2 R/ dt 2, равное (4 ?/3) R 3 G?/ R 2, так что (1/ R) d 2 R/ dt 2= (4 ?/3) G?. Если мы формально отождествим Rс радиусом Вселенной, а ?с плотностью массы Вселенной, это будет уравнение Эйнштейна для эволюции размера Вселенной (в предположении отсутствия давления).

107

См.: Peebles P. J. Е. Principles of Physical Cosmology.Princeton: Princeton University Press, 1993. З. 81.

Ткань космоса. Пространство, время и текстура реальности - n_9.jpg

Надпись гласит: «Но кто на самом деле надувает этот мяч? Из-за чего Вселенная расширяется или раздувается? Эту работу делает Лямбда! Другой ответ не может быть дан». Лямбда обозначает нечто, известное как космологическая постоянная, — идея, с которой мы встретимся в главе 10.

108

Чтобы избежать путаницы, позвольте мне заметить, что недостатком модели с монеткой является то, что каждая монетка, по существу, идентична любой другой, тогда как это определённо не верно для галактик. Но дело в том, что на самых больших масштабах — порядка 100 млн световых лет — индивидуальные отличия между галактиками, как считается, усредняются, так что, когда мы анализируем гигантские объёмы пространства, общие свойства каждого такого объёма чрезвычайно похожи на свойства любого другого такого объёма.

109

Вы могли бы путешествовать прямо по внешнему краю чёрной дыры и оставаться там, включив двигатели, чтобы избежать падения в неё. Сильное гравитационное поле чёрной дыры проявляется как сильная деформация пространства-времени, что приводит к тому, что ваши часы будут идти намного медленнее, чем в более обычном положении в галактике (в относительно пустом пространстве). Снова продолжительность времени, измеренная по вашим часам, совершенно правильна. Но, как и при замедлении времени при высокой скорости, это полностью индивидуальная точка зрения. Когда мы анализируем свойства Вселенной как целого, куда удобнее иметь более широко применимое и согласованное понятие истёкшего времени, и это обеспечивается часами, которые двигаются вместе с космическим потоком расширения пространства и которые подвергаются действию намного более слабого, более усреднённого гравитационного поля.

110

Для анализа геометрической формы пространства математики и физики используют количественный подход к описанию кривизны, разработанный в девятнадцатом столетии, который сегодня является частью математической области знаний, известной как дифференциальная геометрия. Один неформальный способ понимания этого способа описания кривизны заключается в изучении треугольников, нарисованных на или в изучаемом пространстве. Если сумма углов треугольника равна 180°, что верно, когда он нарисован на плоской поверхности стола, мы говорим, что пространство плоское. Но если сумма углов больше или меньше 180°, что верно, когда треугольник нарисован на поверхности сферы (сумма углов больше 180°) или на поверхности седла (сумма углов меньше 180°), мы говорим, что поверхность кривая. Это показано на рис. 8.6.

111

Если бы вы склеили противоположные вертикальные края тора вместе (что разумно сделать, поскольку они отождествлены — когда вы проходите через один край, вы немедленно возникаете на другом), вы бы получили цилиндр. И затем, если бы вы сделали то же самое с верхним и нижним краями (которые теперь будут иметь форму окружностей), вы бы получили бублик. Таким образом, бублик есть другой способ представлять себе тор. Одно усложнение этого представления заключается в том, что бублик уже не выглядит плоским! Однако это действительно так. Используя понятие кривизны, данное в предыдущем примечании, вы найдёте, что все треугольники, нарисованные на поверхности бублика, имеют сумму углов 180°. То, что бублик выглядит кривым, является артефактом того, как мы вложили двумерную поверхность в наш трёхмерный мир. По этой причине в текущем контексте более удобно использовать явно плоские представления двух- и трёхмерных торов, как это обсуждается в тексте.

112

Отметим, что мы весьма вольно разграничили понятия формы поверхности и кривизны. Имеются три типа кривизны для полностью симметричного пространства: положительная, нулевая и отрицательная. Но две поверхности могут иметь одинаковую кривизну и всё же не быть идентичными по форме; простейшим примером является плоский видеоэкран и плоская бесконечная поверхность стола. Таким образом, симметрия позволяет нам свести кривизну пространства к трём возможностям, но имеются в некотором смысле больше чем три формы пространства (отличающиеся тем, что математики называют глобальными свойствами), которые реализуют эти три кривизны.

113

До настоящего момента мы концентрировались исключительно на кривизне трёхмерного пространства — кривизне пространственных сечений в блоке пространства-времени. Однако, хотя это трудно нарисовать, во всех трёх случаях пространственной кривизны (положительной, нулевой, отрицательной) искривлено всё четырёхмерное пространство-время, причём со степенью кривизны тем большей, чем ближе мы подходим к Большому взрыву. Фактически, вблизи момента Большого взрыва четырёхмерная кривизна пространства-времени возрастает настолько, что уравнения Эйнштейна отказывают. Мы обсудим это далее в последующих главах.