160
Как и в предыдущих главах, под «наблюдаемой Вселенной» я подразумеваю ту часть Вселенной, с которой мы могли бы, по крайней мере в принципе, иметь сообщение в течение времени с момента Большого взрыва. Во Вселенной, которая бесконечна в пространстве, как обсуждалось в главе 8, всё пространство несжато в точку в момент Взрыва. Определённо, когда мы всё более приближаемся к началу, наблюдаемая часть Вселенной всё более сжимается, но, хотя это трудно изобразить, имеются объекты — бесконечно далеко удалённые, — которые всегда будут оставаться отделёнными от нас, несмотря на то что плотность материи и энергии всё более возрастает.
161
Леонард Сасскинд в «Элегантной Вселенной», NOVA, трёхчасовые серии Государственной службы радиовещания (PBS), впервые вышли в эфир 28 октября и 4 ноября 2003 г.
162
На самом деле сложность проведения экспериментального тестирования для теории суперструн представляет собой ключевое препятствие, которое существенно затрудняет принятие теории. Однако, как мы увидим в следующих главах, в этом направлении был достигнут немалый прогресс; струнные теоретики очень надеются, что находящиеся на подходе ускорители и эксперименты с космическим базированием дадут по меньшей мере косвенные подтверждения в поддержку теории, а при удаче, может быть, даже больше.
163
Хотя я не касался этого в тексте явно, замечу, что каждая известная частица имеет античастицу— частицу с той же массой, но с противоположным силовым зарядом (вроде противоположного знака электрического заряда). Античастица электрона есть позитрон; античастица u-кварка есть анти- u-кварк и т. д.
164
Как мы увидим в главе 13, недавние работы по теории струн наводят на мысль, что струны могут быть намного больше планковской длины, и это даёт множество критических следствий, включая возможность экспериментальной проверки теории.
165
Существование атомов сначала доказывалось косвенными путями (как объяснение особых пропорций, в которых могут соединяться различные химические вещества, а позже через броуновское движение); существование первых чёрных дыр было подтверждено (к удовлетворению многих физиков) благодаря наблюдению их влияния на газ, который падает на них с расположенных рядом звёзд, а не через «наблюдение» их непосредственно.
166
Поскольку даже слабо колеблющаяся струна имеет некотороеколичество энергии, вы можете поинтересоваться, как это возможно для колебательной моды струны давать безмассовую частицу. Ответ снова связан с квантовой неопределённостью. Независимо от того, насколько спокойна струна, квантовая неопределённость означает, что она имеет некоторое минимальное количество дрожаний и ряби. И благодаря волшебству квантовой механики эти индуцированные неопределённостью колебания имеют отрицательнуюэнергию. Когда это объединяется с положительной энергией от самых слабых из обычных колебаний струны, полная материя/энергия оказывается равной нулю.
167
Как можно отметить для склонного к математике читателя, наиболее точное утверждение состоит в том, что квадратымасс колебательных мод струны являются целыми крайними квадрата планковской массы. Ещё более точно (и в соответствии с недавними разработками, затронутыми в главе 13), квадраты этих масс являются целыми крайними струнного масштаба(что пропорционально обратному квадрату длины струны). В общепринятой формулировке теории струн струнный масштаб и планковская масса связаны, почему я и допустил упрощение в главном тексте и ввёл только планковскую массу. Однако в главе 13 мы рассмотрим ситуации, в которых струнный масштаб может отличаться от планковской массы.
168
Не так уж трудно понять, в упрощённых терминах, как планковская длина вкралась в анализ Клейна. Общая теория относительности и квантовая механика используют три фундаментальные постоянные природы: c(скорость света), G(константа гравитационного взаимодействия) и h(постоянная Планка, описывающая величину квантовых эффектов). Эти три константы могут быть так объединены, чтобы получилась величина с размерностью длины: ( hG/ c 3) 1/2, которая, по определению, является планковской длиной. После подстановки численных значений трёх констант находим для планковской длины примерно 1,616 ? 10 ?33см. Таким образом, если только в теории не получается безразмерный множитель, существенно отличающийся от единицы, — что не часто происходит в простой, хорошо сформулированной физической теории, — мы ожидаем, что планковская длина будет характерной величиной длины, такой как длина свёрнутого пространственного измерения. Тем не менее заметим, что это не исключает возможности, что размеры могут оказаться больше планковской длины, и в главе 13 мы познакомимся с недавней интересной работой, в которой исследуется эта возможность.
169
Включение в теорию заряженной частицы с относительно маленькой массой оказывается труднопреодолимой проблемой.
170
Заметим, что требование симметрии, заключающейся в однородности пространства, которое мы использовали в главе 8, чтобы сузить количество форм Вселенной, мотивируется астрономическими наблюдениями (такими как наблюдения микроволнового фонового излучения) трёх больших измерений. Эти условия симметрии не влияют на форму возможных шести микроскопических дополнительных измерений.
171
Вы можете поинтересоваться, возможны ли не только дополнительные пространственные измерения, но также и дополнительные временны?е измерения. Исследователи (такие как Ицхак Барс из университета Южной Калифорнии) рассмотрели эту возможность и показали, что по меньшей мере возможно сформулировать теорию со вторым временны?м измерением, которая кажется физически разумной. Но является ли это второе временно?е измерение реальным наряду с обычным временным измерением или это только математический трюк, до конца не было установлено; общее ощущение скорее в пользу второго, чем первого. Наоборот, наиболее прямое прочтение теории струн говорит, что дополнительные пространственные измерения являются во всех отношениях столь же реальными, как и три, которые мы знаем.
172
Для математически подкованного читателя: я говорю здесь о конформнойсимметрии — симметрии, обладающей свойством сохранения углов при преобразовании области пространства, занимаемой предполагаемым элементарным объектом. Струны заметают в своей эволюции двумерные мировые поверхности в пространстве-времени, а уравнения теории струн инвариантны относительно группы двумерных конформных преобразований, являющейся бесконечномернойгруппой. В пространствах другой размерности, связанных с объектами, которые сами по себе не являются одномерными, группа конформных преобразований является конечномерной.
173
Многие физики внесли значительный вклад в эти исследования, заложив их фундамент или обнаружив важные следствия: Майкл Дафф, Пол Хау, Такео Инами, Келли Стелле, Эрик Бергшофф, Эргин Сезгин, Пол Таунсенд, Крис Халл, Крис Поп, Джон Шварц, Ашок Сен, Эндрю Строминджер, Кертис Каллан, Джозеф Польчински, Петр Хорава, Джин Дай, Роберт Лей, Герман Николаи, Бернард деВитт и многие другие.
174
В действительности, как разъяснено в главе 12 «Элегантной Вселенной», есть даже более тесная связь между невыявленным десятым измерением и p-бранами. По мере увеличения размера десятого измерения, скажем, в формулировке типа IIA, одномерные струны превращаются в мембраноподобные двумерные трубки. В предположении малости десятого измерения (как всегда неявно подразумевалось до открытия M-теории) эти трубки выглядят и ведут себя как струны. Как и в случае со струнами, остаётся открытым вопрос, являются ли эти найденные браны неделимыми или они состоят из ещё более тонких элементов. Исследователи не исключают возможности, что объекты, до сих пор обнаруженные в теории струн / M-теории, не приведут к прекращению поисков элементарныхсоставляющих Вселенной. Но, возможно, и приведут. Поскольку многое из последующего не затрагивается этой проблемой, мы ради простоты предположим, что все объекты — струны и браны более высокой размерности — являются фундаментальными. Как тогда насчёт более ранних рассуждений, приводивших к выводу, что элементарные объекты более высокой размерности не могут быть включены в физически осмысленную конструкцию? Дело в том, что сами эти рассуждения основывались на другой приближённой схеме квантовой механики — стандартной и проверенной схеме, но имеющей свои ограничения, как и любое приближение. Хотя исследователям ещё предстоит постичь все тонкости, связанные с включением в квантовую теорию объектов высокой размерности, но эти объекты столь органично вплетаются во все пять формулировок теории струн, что почти все верят в то, что они не нарушают ни одного основополагающего и священного принципа физики.