Это ключевое заключение. Точный размер и форма дополнительных измерений оказывают чрезвычайное воздействие на моды колебаний струн, а значит, на свойства частиц.Поскольку базовая структура Вселенной — от формирования галактик и звёзд до существования жизни, как мы её знаем, — чувствительно зависит от свойств частиц, код космоса вполне может быть записан в геометрии пространства Калаби–Яу.
На рис. 12.9 был представлен один пример пространства Калаби–Яу, но имеются по меньшей мере сотни тысяч других возможностей. Тогда вопрос заключается в том, которое из многообразий Калаби–Яу, если это действительно имеет место, соответствует части пространственно-временно?й ткани, связанной с дополнительными измерениями. Это один из наиболее важных вопросов, стоящих перед теорией струн, поскольку только при определённом выборе пространства Калаби–Яу детально определяются свойства колебательных мод струны. На сегодняшний день этот вопрос остаётся без ответа. Причина в том, что текущее понимание уравнений теории струн не обеспечивает решение задачи о выборе одной формы из многих; с точки зрения известных уравнений каждое пространство Калаби–Яу так же пригодно, как и любое другое. Уравнения даже не определяют размера дополнительных измерений. Поскольку мы не видим дополнительных измерений, они должны быть малы, но вопрос о том, насколько именно малы, остаётся открытым.
Является ли это фатальным пороком теории? Возможно. Но я так не думаю. Как мы будем подробнее обсуждать в следующей главе, точные уравнения теории струн ускользают от теоретиков в течение многих лет, поэтому во многих работах использовались приближённые уравнения. Это позволило выделить многие свойства теории струн, но в некоторых вопросах — включая точный размер и форму дополнительных измерений — приближённых уравнений недостаточно. Поскольку мы продолжаем уточнять наш математический анализ и совершенствовать эти приближённые уравнения, определение формы дополнительных измерений является первой — и, на мой взгляд, достижимой — целью. Но до сих пор эта цель остаётся за пределами достигнутого.
Тем не менее мы можем задаться вопросом, приводит ли выбор дополнительных измерений в форме пространства Калаби–Яу к модам колебаний струны, которые близко аппроксимируют известные частицы. И здесь ответ вполне удовлетворительный.
Хотя мы далеки от того, чтобы исследовать все возможности, но были найдены примеры пространств Калаби–Яу, которые приводят к модам колебаний струн, которые в грубом приближении согласуются с табл. 12.1 и 12.2. Например, в середине 1980-х гг. Филип Канделас, Гарри Горовиц, Эндрю Строминджер и Эдвард Виттен (команда физиков, которые обнаружили связь пространств Калаби–Яу с теорией струн) нашли, что каждая дырка (термин, используемый в точно определённом математическом смысле), содержащаяся в пространстве Калаби–Яу, приводит к семейству низкоэнергетических колебательных мод струны. Пространство Калаби–Яу с тремя дырками, следовательно, могло бы дать объяснение для повторяющейся структуры трёх поколений элементарных частиц в табл. 12.1. Действительно, был найден ряд таких «трёхдырочных» пространств Калаби–Яу. Более того, среди этих предпочтительных пространств Калаби–Яу есть такие, которые в точности дают как правильное число частиц — переносчиков взаимодействий, так и правильные электрические заряды и другие ядерные свойства частиц в табл. 12.1 и 12.2.
Это чрезвычайно воодушевляющий результат; он никоим образом не был гарантирован. В попытке соединить общую теорию относительности с квантовой механикой теория струн вполне могла бы остановиться на определённом этапе, обнаружив при этом невозможность каким-нибудь способом подобраться к решению столь же важной задачи объяснения свойств известных частиц материи и взаимодействий. Ввиду возможности такого малоутешительного исхода исследователи воспряли духом в надежде, что теория когда-нибудь засияет. Но идти дальше и рассчитать точные массы частиц значительно труднее. Как мы говорили, частицы в табл. 12.1 и 12.2 имеют массы, которые отличаются от колебаний струны с наинизшей энергией, соответствующей нулю планковских масс — менее чем на одну миллионную от миллиардной доли планковской массы. Расчёты таких бесконечно малых отклонений требуют уровня точности, лежащего за пределами того, что мы можем получить с нашим сегодняшним пониманием уравнений теории струн.
Фактически, я подозреваю, как и многие другие струнные теоретики, что крохотные массы в табл. 12.1 и 12.2 возникают в теории струн почти так же, как это происходит и в стандартной модели. Напомним из главы 9, что в стандартной модели поле Хиггса имеет ненулевую величину во всём пространстве и масса частицы зависит от того, насколько большую тормозящую силу она испытывает, когда пробирается сквозь Хиггсов океан. Аналогичный сценарий, возможно, работает и в струнной теории. Если гигантское количество струн точно колеблется правильно скоординированным способом во всём пространстве, они могут создать однородный фон, который во всех смыслах и со всех точек зрения будет неотличим от океана Хиггса. Колебания струн, которые исходно имели нулевую массу, будут тогда обзаводиться малой ненулевой массой благодаря тормозящей силе, которую они испытывают, когда движутся и колеблются в струнной версии океана Хиггса.
Отметим, однако, что в стандартной модели тормозящая сила, испытываемая данной частицей, — а потому наделяющая её массой, — определяется экспериментальными измерениями и является внешним параметром теории. В версии теории струн тормозящая сила — и, следовательно, массы различных мод колебаний — будет порождаться взаимодействием между струнами (поскольку океан Хиггса будет создаваться струнами) и должна быть вычислима. Теория струн, по крайней мере в принципе, позволяет определить все свойства частиц из самой теории.
Никто ещё этого не сделал, но, как подчёркивалось, теория струн в очень значительной степени находится в состоянии развития. Со временем исследователи надеются полностью реализовать громадный потенциал этого подхода к объединению. Мотивация сильна, поскольку велика потенциальная награда. При большой работе и существенном везении теория струн может в один прекрасный день объяснить фундаментальные свойства частиц и, тем самым, объяснить, почему Вселенная такова, какова она есть.
Ткань космоса согласно теории струн
Хотя многое в теории струн всё ещё лежит вне границ нашего понимания, она уже продемонстрировала впечатляющие новые возможности. Самое поразительное, что, преодолевая пропасть между общей теорией относительности и квантовой механикой, теория струн обнаружила: ткань космоса может иметь намного больше измерений, чем мы непосредственно ощущаем, — измерений, которые могут оказаться ключом к решению некоторых самых глубоких тайн Вселенной. Более того, теория наводит на мысль, что привычные понятия пространства и времени, как мы их до сих пор понимали, могут быть не более чем приближениями к более фундаментальным концепциям, которые всё ещё дожидаются нашего открытия.
В начальные моменты Вселенной эти свойства пространственно-временно?й ткани, которые сегодня доступны только математически, должны были бы быть явными. Очень рано, когда три привычных пространственных измерения также были малы, различие между тем, что мы теперь называем большими измерениями и свёрнутыми измерениями теории струн, вероятно, было мало или совсем отсутствовало. Их современное различие в размерах должно быть следствием космологической эволюции, которая каким-то способом, всё ещё недостаточно для нас понятным, смогла как-то выделить три пространственных измерения и сделать только их объектом расширения в течение 14 млрд лет, как обсуждалось в предыдущих главах. Заглянув назад во времени ещё дальше, мы увидим, что вся наблюдаемая Вселенная будет сжата до субпланковских размеров, и то, что мы обозначали размытым пятном (на рис. 10.6), теперь мы можем идентифицировать с областью, где привычное пространство и время ещё только должны возникнуть из более фундаментальных сущностей, — чем бы они ни были, — и это мы пытаемся понять в настоящих исследованиях.