Г. в первоначальном значении есть наука о фигурах, взаимном расположении и размерах их частей, а также о преобразованиях фигур. Это определение вполне согласуется с определением Г. как науки о пространственных формах и отношениях. Действительно, фигура, как она рассматривается в Г., и есть пространственная форма; поэтому в Г. говорят, например, «шар», а не «тело шарообразной формы»; расположение и размеры определяются пространственными отношениями; наконец, преобразование, как его понимают в Г., также есть некоторое отношение между двумя фигурами — данной и той, в которую она преобразуется.

  В современном, более общем смысле, Г. объемлет разнообразные математические теории, принадлежность которых к Г. определяется не только сходством (хотя порой и весьма отдалённым) их предмета с обычными пространственными формами и отношениями, но также тем, что они исторически сложились и складываются на основе Г. в первоначальном её значении и в своих построениях исходят из анализа, обобщения и видоизменения её понятий. Г. в этом общем смысле тесно переплетается с другими разделами математики и её границы не являются точными. См. разделы Обобщение предмета геометрии и Современная геометрия.

  Развитие геометрии. В развитии Г. можно указать четыре основных периода, переходы между которыми обозначали качественное изменение Г.

  Первый — период зарождения Г. как математической науки — протекал в Древнем Египте, Вавилоне и Греции примерно до 5 в. до н. э. Первичные геометрические сведения появляются на самых ранних ступенях развития общества. Зачатками науки следует считать установление первых общих закономерностей, в данном случае — зависимостей между геометрическими величинами. Этот момент не может быть датирован. Самое раннее сочинение, содержащее зачатки Г., дошло до нас из Древнего Египта и относится примерно к 17 в. до н. э., но и оно, несомненно, не первое. Геометрические сведения того периода были немногочисленны и сводились прежде всего к вычислению некоторых площадей и объёмов. Они излагались в виде правил, по-видимому, в большой мере эмпирического происхождения, логические же доказательства были, вероятно, ещё очень примитивными. Г., по свидетельству греческих историков, была перенесена в Грецию из Египта в 7 в. до н. э. Здесь на протяжении нескольких поколений она складывалась в стройную систему. Процесс этот происходил путём накопления новых геометрических знаний, выяснения связей между разными геометрическими фактами, выработки приёмов доказательств и, наконец, формирования понятий о фигуре, о геометрическом предложении и о доказательстве.

  Этот процесс привёл, наконец, к качественному скачку. Г. превратилась в самостоятельную математическую науку: появились систематические её изложения, где её предложения последовательно доказывались. С этого времени начинается второй период развития Г. Известны упоминания систематические изложения Г., среди которых данное в 5 в. до н. э. Гиппократом Хиосским. Сохранились же и сыграли в дальнейшем решающую роль появившиеся около 300 до н. э. «Начала» Евклида. Здесь Г. представлена так, как её в основном понимают и теперь, если ограничиваться элементарной геометрией; это наука о простейших пространственных формах и отношениях, развиваемая в логической последовательности, исходя из явно формулированных основных положений — аксиом и основных пространственных представлений. Г., развиваемую на тех же основаниях (аксиомах), даже уточнённую и обогащенную как в предмете, так и в методах исследования, называется евклидовой геометрией. Ещё в Греции к ней добавляются новые результаты, возникают новые методы определения площадей и объёмов (Архимед, 3 в. до н. э.), учение о конических сечениях (Аполлоний Пергский, 3 в. до н. э.), присоединяются начатки тригонометрии (Гиппарх, 2 в. до н. э.) и Г. на сфере (Менелай, 1 в. н. э.). Упадок античного общества привёл к сравнительному застою в развитии Г., однако она продолжала развиваться в Индии, в Средней Азии, в странах арабского Востока.

  Возрождение наук и искусств в Европе повлекло дальнейший расцвет Г. Принципиально новый шаг был сделан в 1-й половине 17 в. Р. Декартом, который ввёл в Г. метод координат. Метод координат позволил связать Г. с развивавшейся тогда алгеброй и зарождающимся анализом. Применение методов этих наук в Г. породило аналитическую Г., а потом и дифференциальную. Г. перешла на качественно новую ступень по сравнению с Г. древних: в ней рассматриваются уже гораздо более общие фигуры и используются существенно новые методы. С этого времени начинается третий период развития Г. Аналитическая геометрия изучает фигуры и преобразования, задаваемые алгебраическими уравнениями в прямоугольных координатах, используя при этом методы алгебры. Дифференциальная геометрия, возникшая в 18 в. в результате работ Л. Эйлера, Г. Монжа и др., исследует уже любые достаточно гладкие кривые линии и поверхности, их семейства (т. е. их непрерывные совокупности) и преобразования (понятию «дифференциальная Г.» придаётся теперь часто более общий смысл, о чём см. в разделе Современная геометрия). Её название связано в основном с её методом, исходящим из дифференциального исчисления. К 1-й половине 17 в. относится зарождение проективной геометрии в работах Ж. Дезарга и Б. Паскаля. Она возникла из задач изображения тел на плоскости; её первый предмет составляют те свойства плоских фигур, которые сохраняются при проектировании с одной плоскости на другую из любой точки. Окончательное оформление и систематическое изложение этих новых направлений Г. были даны в 18 — начале 19 вв. Эйлером для аналитической Г. (1748), Монжем для дифференциальной Г. (1795), Ж. Понселе для проективной Г. (1822), причём само учение о геометрическом изображении (в прямой связи с задачами черчения) было ещё раньше (1799) развито и приведено в систему Монжем в виде начертательной геометрии. Во всех этих новых дисциплинах основы (аксиомы, исходные понятия) Г. оставались неизменными, круг же изучаемых фигур и их свойств, а также применяемых методов расширялся.

  Четвёртый период в развитии Г. открывается построением Н. И. Лобачевскимв 1826 новой, неевклидовой Г., называемой теперь Лобачевского геометрией. Независимо от Лобачевского в 1832 ту же Г. построил Я. Больяй (те же идеи развивал К. Гаусс, но он не опубликовал их). Источник, сущность и значение идей Лобачевского сводятся к следующему. В геометрии Евклида имеется аксиома о параллельных, утверждающая: «через точку, не лежащую на данной прямой, можно провести не более чем одну прямую, параллельную данной». Многие геометры пытались доказать эту аксиому, исходя из других основных посылок геометрии Евклида, но безуспешно. Лобачевский пришёл к мысли, что такое доказательство невозможно. Утверждение, противоположное аксиоме Евклида, гласит: «через точку, не лежащую на данной прямой, можно провести не одну, а по крайней мере две параллельные ей прямые». Это и есть аксиома Лобачевского. По мысли Лобачевского, присоединение этого положения к другим основным положениям Г. приводит к логически безупречным выводам. Система этих выводов и образует новую, неевклидову Г. Заслуга Лобачевского состоит в том, что он не только высказал эту идею, но действительно построил и всесторонне развил новую Г., логически столь же совершенную и богатую выводами, как евклидова, несмотря на её несоответствие обычным наглядным представлениям. Лобачевский рассматривал свою Г. как возможную теорию пространственных отношений; однако она оставалась гипотетической, пока не был выяснен (в 1868) её реальный смысл и тем самым было дано её полное обоснование (см. раздел Истолкования геометрии).

  Переворот в Г., произведённый Лобачевским, по своему значению не уступает ни одному из переворотов в естествознании, и недаром Лобачевский был назван «Коперником геометрии». В его идеях были намечены три принципа, определившие новое развитие Г. Первый принцип заключается в том, что логически мыслима не одна евклидова Г., но и другие «геометрии». Второй принцип — это принцип самого построения новых геометрических теорий путём видоизменения и обобщения основных положений евклидовой Г. Третий принцип состоит в том, что истинность геометрической теории, в смысле соответствия реальным свойствам пространства, может быть проверена лишь физическим исследованием и не исключено, что такие исследования установят, в этом смысле, неточность евклидовой Г. Современная физика подтвердила это. Однако от этого не теряется математическая точность евклидовой Г., т.к. она определяется логической состоятельностью (непротиворечивостью) этой Г. Точно так же в отношении любой геометрической теории нужно различать их физическую и математическую истинность; первая состоит в проверяемом опытом соответствии действительности, вторая — в логической непротиворечивости. Лобачевский дал, т. о., материалистическую установку философии математики. Перечисленные общие принципы сыграли важную роль не только в Г., но и в математике вообще, в развитии её аксиоматического метода, в понимании её отношения к действительности.