Г. к. х. составляют для каждой пары гомологичных хромосом. Группы сцепления нумеруют последовательно, по мере их обнаружения. Кроме номера группы сцепления, указывают полные или сокращённые названия мутантных генов, их расстояния в морганидах от одного из концов хромосомы, принятого за нулевую точку, а также место центромеры. Составить Г. к. х. можно только для объектов, у которых изучено большое число мутантных генов. Например, у дрозофилы идентифицировано свыше 500 генов, локализованных в её 4 группах сцепления, у кукурузы — около 400 генов, распределенных в 10 группах сцепления (рис. 1). У менее изученных объектов число обнаруженных групп сцепления меньше гаплоидного числа хромосом. Так, у домовой мыши выявлено около 200 генов, образующих 15 групп сцепления (на самом деле их 20); у кур изучено пока всего 8 из 39. У человека из ожидаемых 23 групп сцепления (23 пары хромосом) идентифицировано только 10, причём в каждой группе известно небольшое число генов; наиболее подробные карты составлены для половых хромосом. У бактерий, которые являются гаплоидными организмами, имеется одна, чаще всего непрерывная, кольцевая хромосома и все гены образуют одну группу сцепления (рис. 2). При переносе генетического материала из клетки-донора в клетку-реципиент, например при конъюгации, кольцевая хромосома разрывается и образующаяся линейная структура переносится из одной бактериальной клетки в другую (у кишечной палочки в течение 110—120 мин). Искусственно прерывая процесс конъюгации, можно по возникшим типам рекомбинантов установить, какие гены успели перейти в клетку-реципиент. В этом состоит один из методов построения Г. к. х. бактерий, детально разработанных у ряда видов. Ещё более детализированы Г. к. х. некоторых бактериофагов. См. также Генетика, Мутация.
Лит.: Лобашев М. Е., Генетика, 2 изд., Л., 1967; Медведев Н. Н., Практическая генетика, 2 изд., М., 1968; Актуальные вопросы современной генетики. Сб. ст., М., 1966; Жакоб Ф., Вольман Э., Пол и генетика бактерий, пер. с англ., М., 1962; Бензер С., Тонкая структура гена, в сборнике: Молекулярная генетика, пер. с англ., М., 1963; Хэйс У., Генетика бактерий и бактериофагов, пер. с англ., М., 1965; Рейвин А. У., Эволюция генетики, пер. с англ., М., 1967; Мюнтцинг А., Генетика, пер. с англ., 2 изд., М., 1967: Уотсон Дж., Молекулярная биология гена, пер. с англ., М., 1967.
В. С. Андреев.
Рис. 2. Генетическая карта хромосомы кишечной палочки (Escherichia coli К 12). Цифры означают время (в мин), необходимое для переноса в клетку-реципиент генетических маркёров, контролирующих биосинтез ряда аминокислот, а также устойчивость к стрептомицину и к фагу Т6; эти цифры характеризуют расстояние между генами. Обозначения: ade — аденин; his — гистидин; try — триптофан; gal — галактоза; lac — лактоза: pro — пролин; leu — лейцин; tre — треонин; met — метионин; arg — аргинин; mt — маннит; хуl — ксилоза; mal — мальтоза; ser — серин; gly — глицин; str и Т6 — устойчивость к стрептомицину или фагу T6.
Рис. 1. Генетические карты 7—10 хромосом кукурузы. Цифры по длине хромосом обозначают расстояние от конца хромосомы в морганидах; буквы — сокращенные названия признаков, определяемых соответствующими генами.
Генетические ряды
Генети'ческие ряды', группы органических соединений с одинаковым числом атомов углерода в молекуле, различающихся функциональными группами; см. Гомологические ряды.
Генетический анализ
Генети'ческий ана'лиз, совокупность методов изучения наследственных свойств организмов. Г. а. включает: 1) Гибридологический метод, изучающий законы наследственности, а также строение и поведение наследственных структур с помощью специальных видов скрещиваний (см. Гибридологический анализ). 2) Цитогенетический метод, развившийся на стыке генетики и цитологии. Главная его задача — установление связи между закономерностями наследования и строением и функциями хромосом (составление цитологических карт хромосом, геномный анализ и др.). 3) Молекулярно-генетический метод, получивший развитие в связи с новыми биохимическими и физико-химическими методами анализа наследственных структур. С его помощью изучается связь между молекулярным строением генов и синтезируемыми в соответствии с заложенной в них информацией белками.
Лит.: Серебровский А. С.. Генетический анализ, М., 1970 (библ.).
Ю. С. Демин.
Генетический код
Генети'ческий код, система зашифровки наследственной информации в молекулах нуклеиновых кислот, реализующаяся у животных, растений, бактерий и вирусов в виде последовательности нуклеотидов. В природных нуклеиновых кислотах— дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК) — встречаются 5 распространённых типов нуклеотидов (по 4 в каждой нуклеиновой кислоте), различающихся по входящему в их состав азотистому основанию (см. Пуриновые основания, Пиримидиновые основания). В ДНК встречаются основания: аденин (А), гуанин (Г), цитозин (Ц), тимин (Т); в РНК вместо тимина присутствует урацил (У). Кроме них, в составе нуклеиновых кислот обнаружено около 20 редко встречающихся (т. н. неканонических, или минорных) оснований, а также необычных сахаров. Т. к. количество кодирующих знаков Г. к. (4) и число разновидностей аминокислот в белке (20) не совпадают, кодовое число (т. е. количество нуклеотидов, кодирующих 1 аминокислоту) не может быть равно 1. Различных сочетаний по 2 нуклеотида возможно лишь 42=16, но этого также недостаточно для зашифровки всех аминокислот. Американский учёный Г. Гамов предложил (1954) модель триплетного Г. к., т. е. такого, в котором 1 аминокислоту кодирует группа из трёх нуклеотидов, наз. кодоном. Число возможных триплетовравно 43=64, а это более чем втрое превышает число распространённых аминокислот, в связи с чем было высказано предположение, что каждой аминокислоте соответствует несколько кодонов (т. н. вырожденность кода). Было предложено много различных моделей Г. к., из которых серьёзного внимания заслуживали три модели (см. рис.): перекрывающийся код без запятых, неперекрывающийся код без запятых и код с запятыми. В 1961 Ф. Крик (Великобритания) с сотрудниками получил подтверждение гипотезы триплетного неперекрывающегося кода без запятых. Установлены следующие основные закономерности, касающиеся Г. к.: 1) между последовательностью нуклеотидов и кодируемой последовательностью аминокислот существует линейное соответствие (колинеарность Г. к.); 2) считывание Г. к. начинается с определённой точки; 3) считывание идёт в одном направлении в пределах одного гена; 4) код является неперекрывающимся; 5) при считывании не бывает промежутков (код без запятых); 6) Г. к., как правило, является вырожденным, т. е. 1 аминокислоту кодируют 2 и более триплетов-синонимов (вырожденность Г. к. уменьшает вероятность того, что мутационная замена основания в триплете приведёт к ошибке); 7) кодовое число равно трём; 8) код в живой природе универсален (за некоторыми исключениями). Универсальность Г. к. подтверждается экспериментами по синтезу белка in vitro. Если в бесклеточную систему, полученную из одного организма (например, кишечной палочки), добавить нуклеиновокислотную матрицу, полученную из др. организма, далеко отстоящего от первого в эволюционном отношении (например, проростков гороха), то в такой системе, будет идти белковый синтез. Благодаря работам американских генетиков М. Ниренберга, С. Очоа, Х. Корана известен не только состав, но и порядок нуклеотидов во всех кодонах (см. табл., построенную по данным опытов с кишечной палочкой).