Одна из важных задач С. м. состоит в создании т. н. теорий прочности, на основе которых можно проверить прочность элементов в сложном напряжённом состоянии, исходя из прочностных характеристик, полученных опытным путём для простого растяжения-сжатия. Существует ряд теорий прочности; в каждом отдельном случае пользуются той из них, которая в наибольшей степени отвечает характеру нагружения и разрушения материала.
Историческая справка. История С. м., как и многих др. наук, неразрывно связана с историей развития техники. Зарождение науки о С. м. относится к 17 в.; её основоположником считается Галилей, который впервые обосновал необходимость применения аналитических методов расчёта взамен эмпирических правил. Важным шагом в развитии С. м. явились экспериментальные исследования Р. Гука (60—70-е гг. 17 в.), установившего линейную зависимость между силой, приложенной к растянутому стержню, и его удлинением (закон Гука). В 18 в. большой вклад в развитие аналитических методов в С. м. был сделан Д. Бернулли, Л. Эйлероми Ш. Кулоном, сформулировавшими важнейшие гипотезы и создавшими основы теории расчёта стержня на изгиб и кручение. Исследования Эйлера в области продольного изгиба послужили основой для создания теории устойчивости стержней и стержневых систем. Т. Юнг ввёл (1807) понятие о модуле упругости при растяжении и предложил метод его определения.
Важный этап в развитии С. м. связан с опубликованием (в 1826) Л. Навье первого курса С. м., содержавшего систематизированное изложение теории расчёта элементов конструкций и сооружений. Принципиальное значение имели труды А. Сен-Венана (2-я половина 19 в.). Им впервые были выведены точные формулы для расчёта на изгиб кривого бруса и сформулирован принцип, согласно которому распределение напряжений в сечениях, отстоящих на некотором расстоянии от места приложения нагрузки, не связано со способом её приложения, а зависит только от равнодействующей этой нагрузки.
Большие заслуги в развитии С. м. принадлежат русскому учёным М. В. Остроградскому, исследования которого в области С. м., строительной механики, математики и теории упругости приобрели мировую известность, и Д. И.Журавскому, впервые установившему (1855) наличие касательных напряжений в продольных сечениях бруса и получившему формулу для их определения (эта формула применяется и в современной практике инженерных расчётов). Всеобщее признание получили исследования Ф. С. Ясинского, разработавшего (1893) теорию продольного изгиба в упругой стадии и за её пределами (рекомендации Ясинского послужили основой для разработки современных нормативных документов в СССР и за рубежом).
В начале 20 в. расширение масштабов применения железобетонных и стальных конструкций, появление сложных машин и механизмов обусловили быстрое развитие науки о С. м. Были опубликованы классические учебники С. П. Тимошенкопо С. м. и строительной механике, труды А. Н. Динника по продольному изгибу, устойчивости сжатых стержней и др.
Дальнейшему совершенствованию методов С. м. способствовало создание в СССР ряда научно-исследовательских учреждений для проведения исследований в области расчёта конструкций. Появились новые разделы С. м. Большое влияние на развитие С. м. оказали труды Н. М. Беляева в области пластических деформаций, А. А. Ильюшинапо теории пластичности, Ю. Н. Работноваи А. Р. Ржаницына по теории ползучести. Значительным вкладом в науку о С. м. явилась созданная В. З. Власовым теория расчёта тонкостенных стержней и оболочек. Важные фундаментальные исследования выполнены советскими учёными Н. И. Безуховым, В. В. Болотиным, А. Ф. Смирновым, В. И. Феодосьевым и др.
Современные тенденции развития науки о С. м. Одна из важнейших задач С. м. — установление причин и характера разрушения материалов, требующее всестороннего теоретического и экспериментального изучения процессов, происходящих в микрообъёмах тела, в частности характера возникновения и развития трещин. Установлено существование таких (предельных) напряжений, превышение которых влечёт за собой прогрессирующий рост уже появившихся трещин, приводящий в конечном счёте к разрушению тела. Если напряжения меньше указанного предела, то тело, имеющее трещины, находится в состоянии трещиноустойчивости. В некоторых случаях под действием нагрузки разрушения в микроэлементах распространяются на весь объём тела (особенно при высоких температурах). Исследование этих вопросов требует создания нового важного раздела механики деформируемого тела — механики разрушения. Ещё недостаточно изучен ряд вопросов т. н. усталостной прочности материалов, в частности прочность элементов (деталей) машин при их длительном циклическом нагружении.
В связи с появлением новых конструкционных материалов (например, пластмасс, лёгких сплавов) возникла необходимость создания теорий прочности, отражающих специфические свойства этих материалов. Современные технологические процессы (например, с применением высоких давлений) позволяют получать материалы с весьма высокой прочностью, поведение которых под нагрузкой недостаточно изучено и требует целенаправленных исследований.
Лит.: Тимошенко С. П., История науки о сопротивлении материалов с краткими сведениями из истории теории упругости и теории сооружений, М., 1957; Работнов Ю. Н., Сопротивление материалов, М.. 1962; Феодосьев В. И., Сопротивление материалов, М., 1974; Сопротивление материалов, М., 1975.
Под редакцией А. Ф. Смирнова.
Сопротивление омическое
Сопротивле'ние оми'ческое, прежнее название предельного значения сопротивления активного при w ® 0, где w — частота переменного тока. Термином «С. о.» подчёркивается выполнение Ома закона, т. е. наличие линейной зависимости между током и напряжением.
Сопротивление реактивное
Сопротивле'ние реакти'вное электрическое, величина, характеризующая сопротивление, оказываемое переменному току электрической ёмкостью и индуктивностью цепи (её участка); измеряется в омах. В случае синусоидального тока при последовательном соединении индуктивного и ёмкостного элементов цепи С. р. выражается в виде разности сопротивления индуктивного и сопротивления ёмкостного: , где w — угловая частота тока, L и С — индуктивность и ёмкость цепи; С. р. равно отношению амплитуды напряжения на зажимах цепи, обладающей малым сопротивлением активным, к амплитуде тока в ней. В цепи, обладающей только С. р., при протекании переменного тока происходит передача энергии источника тока электрическому или магнитному полю, создаваемому соответственно ёмкостным или индуктивным элементом цепи, и затем обратно, причём средняя за период мощность равна нулю. Наличие у цепи С. р. вызывает сдвиг фазмежду напряжением и током. В цепях несинусоидального тока С. р. различно для отдельных гармонических составляющих тока.
Сопротивление электрическое
Сопротивле'ние электри'ческое, см. Электрическое сопротивление.
Сопротивление электрической цепи
Сопротивле'ние электри'ческой цепи, полное электрическое сопротивление, величина, характеризующая сопротивление цепи электрическому току; измеряется в омах. В случае синусоидального переменного тока С. э. ц. выражается отношением амплитуды напряжения на зажимах цепи к амплитуде тока в ней и равно
, где r — сопротивление активное, х — сопротивление реактивное. При несинусоидальном переменном токе С. э. ц. определяется отдельно для каждой к-той гармонической составляющей: .