В традиционной картине, однако, любая подобная симметрия неизбежно будет подпорчена вторым началом термодинамики. Все, что мы знаем об эволюции энтропии Вселенной, можно легко объяснить исходя из предположения о том, что при зарождении Вселенной энтропия была крайне низка и теперь естественным образом с течением времени увеличивается. Если Вселенную ждет повторное сжатие, то ни один из известных законов физики не запрещает энтропии продолжать расти. Вселенная в момент Большого сжатия будет беспорядочным высокоэнтропийным местом, не имеющим ничего общего с первоначальной однородностью Большого взрыва.
В попытке восстановить общую симметрию истории Вселенной люди периодически задумывались о необходимости дополнительного закона физики: граничного условия в будущем (гипотеза о будущем, дополняющая гипотезу о прошлом), которое гарантировало бы, что энтропия будет низкой не только вблизи Взрыва, но и вблизи Сжатия. Данная идея, предложенная Томасом Голдом (больше известным как пионер модели стационарной вселенной) и другими учеными, подразумевает, что стрела времени развернется, как только Вселенная достигнет максимального размера, и, следовательно, заявление о том, что энтропия увеличивается в направлении времени, соответствующем расширению Вселенной, всегда останется верным.[285]
Вселенная Голда так и не снискала расположения космологов, и причина тому проста: нет никаких особых оснований надеяться на существование какого бы то ни было граничного условия в будущем. Определенно, оно способно восстановить глобальную симметрию времени, но ничто в нашем опыте наблюдения Вселенной не требует такого условия, и оно не вытекает ни из каких фундаментальных принципов.
Рис. 15.2. Наверху: размер Вселенной со сжатием как функция времени. Внизу: два возможных сценария эволюции энтропии. Согласно традиционным взглядам, энтропия должна продолжать увеличиваться даже после сжатия Вселенной, как показано слева внизу. Во Вселенной Голда низкоэнтропийное граничное условие в будущем обязывает энтропию в определенный момент времени начать уменьшаться.
С другой стороны, точно так же нет никаких особых оснований надеяться на существование граничного условия в прошлом, за исключением того неоспоримого факта, что нам подобное условие необходимо для объяснения Вселенной, которую мы фактически наблюдаем вокруг себя.[286] Хью Прайс отстаивал Вселенную Голда как нечто, что должно приниматься космологами всерьез, — по крайней мере, на уровне мысленного эксперимента, если не модели реального мира, — как раз по этой причине.[287] Мы не знаем, почему энтропия была низкой вблизи момента Большого взрыва, но это действительно так; следовательно, тот факт, что мы не знаем, почему энтропия должна быть низкой вблизи Большого сжатия, — недостаточная причина для того, чтобы попросту отбросить такую возможность. Действительно, если не вводить временную асимметрию вручную, то вполне разумно полагать, что какой бы неизвестный закон физики ни навязывал низкую энтропию в окрестности Взрыва, этот принцип может делать то же самое и для Сжатия.
Интересно рассмотреть данный сценарий с точки зрения настоящих ученых и попробовать ответить на вопрос, могут ли существовать какие-либо поддающиеся экспериментальной проверке следствия будущего низкоэнтропийного условия. Даже если такое условие существует, очень просто избежать любых грядущих последствий, всего лишь отложив Большое сжатие до чрезвычайно отдаленного момента в будущем. Однако если бы оно было относительно близко во времени (через триллион, а не гугол лет), то мы могли бы видеть реальные эффекты от будущего уменьшения энтропии.[288]
Вообразите, например, яркий источник света (который мы для удобства будем называть «звездой»), живущий в будущей фазе коллапса. Как бы мы могли его обнаружить? Мы обнаруживаем обычные звезды благодаря тому, что они излучают фотоны, которые перемещаются по световым конусам прочь от звезды. Мы поглощаем фотон в будущем по отношению к событию излучения и объявляем, что видим звезду. Теперь давайте рассмотрим этот сценарий в обратном направлении во времени.[289] Мы обнаруживаем фотоны, движущиеся по радиусу по направлению к звезде в будущем; вместо того чтобы сиять, звезда высасывает свет из Вселенной.
Возможно, вы подумаете, что можно «увидеть» будущую звезду, посмотрев в направлении от звезды и заметив один из фотонов, направляющихся к ней. Но это неосуществимо — если мы поглотим фотон, то он никогда не доберется до звезды. В будущем существует граничное условие, требующее, чтобы фотоны поглощались звездой, а не просто направлялись к ней. Так что в действительности картина, которая предстанет нашему взору, — это наш собственный телескоп, излучающий свет в пространство в направлении будущей звезды.[290] Если телескоп направлен на звезду в будущем, он излучает свет, если же нет, он остается темным. Это перевернутая во времени традиционная картина: «Если телескоп направлен на звезду в прошлом, он видит свет; если же нет, то он ничего не видит».
Все это кажется безумием, но лишь потому, что мы не привыкли в рассуждениях о мире учитывать будущее граничное условие. «Откуда телескоп знает, что нужно излучать свет, когда он смотрит в направлении звезды, которая появится лишь через триллион лет?» В этом суть будущих граничных условий — они выбирают невероятно маленькую долю микросостояний в рамках нашего текущего макросостояния, в которых происходит такое, казалось бы, маловероятное событие.[291] Если как следует разобраться, то в этом нет ничего более странного, чем в граничном условии прошлого, которое существует в нашей реальной Вселенной, за исключением того, что одно нам привычно, а второе нет. (Кстати, пока никому не удалось обнаружить никаких экспериментальных свидетельств будущих звезд или же любых других доказательств существования в будущем низкоэнтропийного граничного условия. Если бы кто-то открыл что-то подобное, вы бы наверняка об этом услышали.)
Таким образом, Вселенную Голда следует рассматривать скорее как поучительную историю, а не реального кандидата на роль объяснения стрелы времени. Если вы думаете, что у вас есть некое естественное объяснение того, почему ранняя Вселенная обладала удивительно низкой энтропией, но вы утверждаете, что не прибегаете ни к каким явным нарушениям симметрии относительно обращения времени, то почему бы поздней Вселенной не выглядеть точно так же? Этот мысленный эксперимент помогает заново осознать, насколько в действительности сложна и запутанна низкоэнтропийная конфигурация Большого взрыва.
В итоге все пока что сошлись на том, что на самом деле Вселенную не ожидает повторное сжатие. Вселенная ускоряется; если темная энергия — это абсолютно постоянная энергия вакуума (а это самый очевидный вариант), то ускорение будет продолжаться вечно. Мы пока не обладаем достаточными знаниями для того, чтобы делать окончательные заявления, но, скорее всего, наше будущее совсем не похоже на наше прошлое. И это снова ставит необычные обстоятельства, сопутствующие Большому взрыву, в центр загадки, которую мы пытаемся решить.
До Большого взрыва
У нас почти закончились варианты. Если мы не задействуем асимметрию времени (либо в динамических законах, либо в граничном условии) вручную, а у Большого взрыва была низкая энтропия, и при этом мы не настаиваем на низкоэнтропийном условии в будущем, то что остается? Мы словно столкнулись с неразрешимой логической загадкой, не оставившей нам путей к примирению эволюции энтропии в нашей наблюдаемой Вселенной с обратимостью фундаментальных законов физики.