Адрес состояния системы
В теориях, которые используются физиками для описания реального мира, присутствует общее базовое понятие состояния, которое «развивается с течением времени». Это касается как классической механики, сформулированной Ньютоном, так и общей теории относительности и квантовой механики, и даже квантовой теории поля и стандартной модели в физике элементарных частиц. На любой из наших шахматных досок состоянием является горизонтальная строка квадратиков, каждый из которых окрашен в белый или серый цвет (и, возможно, несет какую-то дополнительную информацию). В зависимости от подхода к физике реального мира определение состояния может меняться. Однако каким бы оно ни было, мы можем задавать одни и те же вопросы об изменении направления времени и других возможных симметриях нашего мира.
«Состояние» физической системы — это «полный набор информации о системе в определенный момент времени, которая достаточна для описания ее дальнейшего развития[115] с учетом законов физики». Если точнее, то данное определение распространяется только на изолированные системы, то есть системы, не подверженные влиянию непредсказуемых внешних сил (в ситуации с предсказуемыми внешними силами мы можем просто-напросто объявить их частью «законов физики», действующих на данную систему). Таким образом, мы можем рассуждать как обо всей Вселенной, которая предполагается изолированной, так и о каком-то космическом корабле, находящемся на достаточном удалении от любых планет или звезд.
Рассмотрим для начала классическую механику — мир сэра Исаака Ньютона.[116] Что нам нужно знать, чтобы предсказать будущее системы в ньютоновской механике? Выше я уже упоминал об этом: нам потребуются положения и скорости всех элементов системы. Однако не будем торопиться, а попробуем прийти к этому ответу постепенно, шаг за шагом.
Когда кто-то упоминает ньютоновскую механику, можно не сомневаться — дело закончится игрой в бильярд.[117] Но давайте представим себе новый вариант игры — не тот традиционный бильярд с восемью шарами, а нечто уникальное. Свое гипотетическое развлечение с бильярдными шарами мы назовем бильярдом физиков. В попытке избавиться от излишних усложнений и добраться до сути вещей физики выдумывают игры, в которых нет ни шума, ни трения: идеально круглые сферы катаются по столу и отталкиваются друг от друга, не теряя ни капли энергии. Настоящие бильярдные шары ведут себя совершенно по-другому — каждому столкновению сопутствуют звук удара и рассеяние определенного количества энергии. Это наглядное проявление работы стрелы времени: шум и трение создают энтропию. Мы же на мгновение отбросим подобные сложности.
Для начала вообразим один-единственный бильярдный шар, катающийся по столу (распространить правила игры сразу на несколько шаров будет совсем нетрудно). Мы считаем, что он никогда не теряет энергию и, наталкиваясь на бортик, просто отскакивает. В целях нашей задачи «идеальный отскок» будет частью «физических законов» данной замкнутой системы — бильярдного шара. Так что же можно считать состоянием этого единственного шара?
На первый взгляд кажется, что логично считать состоянием шара в любой момент времени его положение на столе. В конце концов, если сделать фотографию стола, то что мы увидим? Место, где в тот момент находился шар. Однако выше мы определили состояние как полную информацию, требуемую для предсказания движения системы; очевидно, что одного лишь положения нам недостаточно. Если я скажу, что шар находится точно в центре стола (и больше ничего), и попрошу вас предсказать, где он окажется секундой позже, то вы не сможете дать мне точный ответ, ведь вам неизвестно, в какую сторону шар катился.
Разумеется, для предсказания движения шара на основании информации, имеющейся в наличии в конкретный момент времени, нам нужно знать как положение, так и скорость объекта. Говоря «состояние шара», мы имеем в виду его положение и скорость и — обратите внимание! — ничего более. Нам неважно, например, с каким ускорением шар катится, какое сейчас время суток, чем шар позавтракал в этот день и что еще происходит в его внутреннем мире.
Для описания движения частиц в классической механике вместо скорости часто используют такое понятие, как импульс. История данного понятия восходит к тысячному году и связана с величайшим персидским философом Ибн Синой (в латинизированном написании Авиценна). Он предложил теорию движения, в которой «влечение» — произведение массы и скорости — остается в отсутствие внешних воздействий постоянным. Импульс сообщает нам, какой энергией обладает объект и в каком направлении он движется.[118] В ньютоновской механике импульс равен произведению массы на скорость, а в теории относительности формула слегка модифицируется с учетом того, что с приближением скорости объекта к скорости света его импульс возрастает до бесконечности. Если вам известен импульс объекта с фиксированной массой, то вы знаете его скорость, и наоборот. Следовательно, определить состояние любой частицы можно, указав ее положение и импульс.
Рис. 7.6. Одинокий бильярдный шар, катающийся по столу без трения. Показаны состояния в три разных момента времени. Стрелочки обозначают импульс шара; он остается постоянным до тех пор, пока шар не отскочит от бортика.
Зная положение и импульс бильярдного шара, вы можете полностью предсказать всю траекторию, по которой он будет следовать, катаясь по столу. Пока шар свободно катится, не касаясь стенок, импульс остается постоянным; меняется лишь положение шара вдоль прямой линии, и происходит это с постоянной скоростью. Когда шар врезается в бортик, импульс мгновенно отражается относительно линии бортика, после чего шар продолжает движение с постоянной скоростью, то есть он отскакивает. Я описываю простые вещи сложными словами, но это необходимо.
Вся суть ньютоновской механики в этом и заключается. Если по одному и тому же столу катается много шаров, то полное состояние системы представляет собой всего лишь набор положений и импульсов каждого из них. Скажем, состояние Солнечной системы — это положения и импульсы всех планет, а также Солнца. Или же, если вам хочется большей детальности и реалистичности, — то это положения и импульсы всех частиц, из которых состоят эти объекты. А состояние вашего парня или девушки включает описание положения и импульса каждого атома его или ее тела. Правила классической механики позволяют однозначно предсказать, по какому пути пойдет развитие системы, опираясь лишь на информацию о ее текущем состоянии. После того как вы составили нужный список, дело берет в свои руки демон Лапласа, и исход предопределен. Однако вы не столь умны, как демон Лапласа, и у вас нет доступа к такому объему информации, поэтому парни и девушки навсегда останутся загадками. Кроме того, они представляют собой открытые системы, так что в любом случае вам потребовалась бы также информация и обо всем остальном мире.
Во многих ситуациях удобно рассуждать обо «всех потенциально возможных состояниях системы», называемых пространством состояний системы. Обратите внимание на то, что слово «пространство» употребляется в двух, казалось бы, совершенно разных смыслах. У нас есть пространство — физическая арена, на которой происходит движение реальных объектов во Вселенной, а также абстрактное понятие пространства как математического набора объектов (это почти то же самое, что и «множество», но с возможностью существования некой дополнительной структуры). Пространство состояний — это пространство, способное принимать разные формы в зависимости от рассматриваемых физических законов.