Даже с учетом всего вышесказанного мы все равно можем задаваться вопросом, почему наш наблюдаемый участок Вселенной демонстрирует такое низкоэнтропийное граничное условие на одном конце времени: почему наши конкретные степени свободы когда-то находились в таком неестественном состоянии? Но в этой картине не совсем правильно ставить вопрос таким образом. Нельзя говорить, что нам с самого начала известно, какие степени свободы мы представляем, и что это дает нам право интересоваться, почему они находятся (или были) в определенной конфигурации. Вместо этого мы должны смотреть на Мультиленную как на единое целое и спрашивать о том, что наиболее часто предстает взору наблюдателей, таких как мы сами. (Если наш сценарий окажется путным, то конкретное определение «таких, как мы сами» не должно играть роли.)
В данной версии Мультиленной мы встретим как изолированные больцмановские мозги, притаившиеся в пустых деситтеровских областях, так и обычных наблюдателей, обнаруживаемых в шлейфах низкоэнтропийного начала новорожденных Вселенных. При этом представителей обоего типа должно быть бесконечно много. Но какая бесконечность выигрывает? Типы флуктуаций, создающих причудливых наблюдателей на равновесном фоне, определенно редки, но и другие, результатом которых становятся новорожденные Вселенные, также далеко не часты. В конечном итоге нас перестанет удовлетворять рассмотрение смешных картинок со Вселенными, разветвляющимися в обоих направлениях во времени; мы хотим понять вещи на количественном уровне настолько, насколько это возможно, для того чтобы делать надежные предсказания. Тем не менее приходится признать, что состояние дел пока не настолько хорошее. И все же вполне вероятно, что намного больше наблюдателей появляется по мере того, как новорожденные Вселенные растут и охлаждаются, стремясь к равновесию, чем из случайных флуктуаций в пустом пространстве.
Собирая все вместе
Работает ли это? Предлагает ли сценарий Мультиленной с новорожденными Вселенными удовлетворительное объяснение стрелы времени?
Мы рассмотрели много возможных подходов к проблеме стрелы времени: пространство состояний, которое меняется с течением времени, необратимые по своей природе динамические законы, особое граничное условие, симметричная расширяющаяся и сжимающаяся Вселенная, отскакивающая Вселенная с глобальной симметрией обращения времени и без нее, неограниченная Мультиленная и, конечно же, сценарий Больцмана—Лукреция с флуктуациями вокруг вечного равновесного состояния. Вселенная Голда, в которой происходит повторное сжатие, кажется довольно маловероятным вариантом на эмпирических основаниях, так как скорость расширения Вселенной все время увеличивается. А Вселенную Больцмана—Лукреция позволяют вычеркнуть из списка результаты наблюдений, поскольку Большой взрыв обладал намного меньшей энтропией, чем допускается условиями этой теории. Однако прочие возможности еще не сняты с обсуждения; каждая из них предоставляет более или менее удовлетворительный ответ, но ни в одной мы не можем быть уверены настолько, чтобы со спокойной совестью отбросить остальные. Не говоря уже о вполне реальной возможности того, что истинно верную теорию еще никто не придумал.
Трудно сказать, сыграют ли в конечном итоге какую-либо роль в понимании стрелы времени новорожденные Вселенные и Мультивселенная. Начнем с того, что я приложил усилия (возможно, даже чрезмерные), для того чтобы подчеркнуть, что многие шаги на этом пути были, мягко говоря, дерзновенно спекулятивными. Мы еще не достигли того уровня понимания квантовой гравитации, при котором могли бы уверенно заявлять, что в пространстве де Ситтера на самом деле происходят флуктуации, создающие новорожденные Вселенные; существуют аргументы как «за», так и «против». Также мы еще не пришли к окончательному пониманию роли энергии вакуума. Мы в своих рассуждениях отталкивались от мнения, что космологическая постоянная, которую мы наблюдаем в нашей Вселенной сегодня, действительно представляет минимально возможную энергию вакуума, но мы не располагаем обширной базой твердых доказательств этого предположения. Например, в контексте ландшафта теории струн достаточно легко получить состояния с правильным значением энергии вакуума, но точно так же легко получить любые другие виды состояний, включая состояния с отрицательной энергией вакуума или точно равной нулю. Более универсальная теория квантовой гравитации и Мультиленной описывала бы, как все эти возможные состояния соответствуют друг другу, включая переходы между разным числом макроскопических измерений, а также между разными значениями энергии вакуума. К тому же стоит упомянуть, что мы в действительности не относились к квантовой механике со всей серьезностью — мы кивали в сторону квантовых флуктуаций, но рисовали картины того, что по сути является классическими пространствами—временами. Правильный ответ, каким бы он ни оказался, с большой вероятностью будет сформулирован в терминах волновых функций, уравнения Шрёдингера и гильбертовых пространств.
Самое важное во всем этом — не перспективы доказательства истинности какой-то определенной модели, а ключевые подсказки, которые мы, пытаясь понять Вселенную на самых больших масштабах, получаем от стрелы времени. Если все на самом деле ограничивается той Вселенной, которую мы видим, — с Большим взрывом в роли низкоэнтропийного начала, то, похоже, мы зашли в тупик с неприятной проблемой тонкой подстройки. Встраивание нашего наблюдаемого участка в более обширную Мультиленную смягчает эту проблему за счет изменения контекста: теперь целью становится объяснение не того, почему вся Вселенная обладает низкоэнтропийным граничным условием в начале времен, а того, почему в намного более крупной системе возникают относительно небольшие области пространства—времени, где энтропия резко возрастает. На этот вопрос, в свою очередь, можно ответить, если допустить, что у Мультиленной вообще нет состояния максимальной энтропии: энтропия увеличивается, потому что она способна возрастать бесконечно, независимо от того, в каком состоянии мы находимся. Трюк в том, чтобы обставить все так, что механизмом, за счет которого происходит всеобщее увеличение энтропии, окажется воспроизводство Вселенных, напоминающих нашу собственную.
Что приятно в Мультиленной, в основе которой лежит пространство де Ситтера и новорожденные Вселенные, так это то, что она избегает всех стандартных ловушек, преграждающих дорогу многим другим подходам к стреле времени: она обращается с прошлым и будущим на равных условиях, не прибегает к необратимости на уровне фундаментальной динамики и никогда не предполагает возможность в произвольный момент времени по требованию обустраивать низкоэнтропийные условия для всей Вселенной. Она служит демонстрацией того, что подобное объяснение по крайней мере потенциально возможно, даже если мы не можем пока судить о том, разумен ли этот конкретный его вариант, не говоря уж о том, является ли он частью правильного окончательного ответа. У нас есть все основания надеяться, что в конце концов мы придем к уверенному пониманию того, как стрела времени динамически и естественно порождается самими законами физики.
Глава 16 Эпилог
Смотри на мир так, будто время исчезло, и тогда все кривое станет для тебя прямым.
В отличие от многих авторов я не мучился с выбором названия для этой книги.[303] Как только мне в голову пришла Вечность (From Eternity to Here), все сомнения были отброшены. Коннотации идеальны: с одной стороны, классический фильм (по мотивам классического романа) с той культовой сценой, в которой неукротимые волны Тихого океана разбиваются о берег рядом с Деборой Керр и Бертом Ланкастером, слившимися в страстном объятии;[304] с другой — космологическое великолепие, заключенное в слове вечность.