Вывод прост: квантовая гравитация не подчиняется принципу локальности. В квантовой гравитации происходящее здесь не может быть абсолютно независимым от происходящего там. Максимальное количество вещей, которые могут происходить в какой-то области пространства (число возможных микросостояний в ней), не пропорционально объему этой области; оно пропорционально площади поверхности границы данной области. В реальном мире, который описывает квантовая гравитация, в заданную область получается втиснуть намного меньше информации, чем мы могли бы наивно предполагать, не беря в расчет гравитацию.

Эта догадка получила название голографического принципа. Впервые данный принцип был предложен нидерландским ученым, нобелевским лауреатом Герардом 'т Хоофтом и американским физиком-теоретиком, специалистом в области теории струн Леонардом Сасскиндом, а позднее он был формализован немецко-американским физиком Рафаэлем Буссо (бывшим учеником Стивена Хокинга).[233] На первый взгляд голографический принцип может казаться не слишком интересным. Хорошо, число возможных состояний в области пропорционально размеру этой области в квадрате, а не ее размеру в кубе. Но это совсем не тот тип замечаний, которые позволяют привлечь к себе внимание и моментально очаровать незнакомцев на вечеринке.

Вот почему голография важна: этот принцип означает, что пространство— время не фундаментально. Обычно, размышляя о происходящем во Вселенной, мы неявно предполагаем существование чего-то вроде локальности; мы отдельно описываем то, что случилось здесь, и отдельно то, что случилось там, не связывая между собой все возможные положения в пространстве. Голография утверждает, что в принципе так делать нельзя, потому что еле уловимые связи существуют между любыми событиями, происходящими в разных точках пространства, и это здорово ограничивает нашу свободу в описании конфигурации материи в пространстве.

Обычная голограмма создает впечатление объемного изображения за счет отражения света от особой двумерной поверхности. Голографический принцип гласит, что на фундаментальном уровне Вселенная примерно такая же: все, что, по нашему мнению, происходит в трехмерном пространстве, в действительности тайно закодировано на двумерной поверхности, насыщенной информацией. Трехмерное пространство, в котором мы живем и дышим, можно было бы (опять же в принципе) реконструировать, отталкиваясь от намного более компактного описания. Доступ к этому описанию у нас может быть, а может и отсутствовать. Второй вариант намного более вероятен, но в следующем разделе мы детально рассмотрим пример ситуации, когда эта информация нам доступна.

Возможно, ничто из этого вас не удивляет. Как мы говорили в предыдущей главе, квантовой механике присущ определенный тип нелокальности даже без учета гравитации; состояние Вселенной описывает все частицы скопом, не ссылаясь на каждую конкретную частицу. Таким образом, когда в игру вступает гравитация, вполне естественно предполагать, что состояние Вселенной будет включать все пространство—время сразу. И все же тип нелокальности, подразумеваемый голографическим принципом, отличается от нелокальности квантовой механики как таковой. В квантовой механике можно вообразить такие волновые функции, в которых состояние кошки запутано с состоянием собаки, но точно так же можно вообразить состояния, которые вообще не запутаны между собой, или же состояния, запутанность которых принимает какую-то другую форму. В то же время голографический принцип утверждает, что есть процессы, которые попросту не могут происходить, что информация, необходимая для описания мира, может быть сжата во много раз. Следствия, вытекающие из этой идеи, по сей день до конца не изучены, и можно не сомневаться, что впереди нас ждет еще очень много сюрпризов.

Хокинг сдается

Голографический принцип — очень общая идея; он должен быть частью теории квантовой гравитации, какой бы она ни оказалась, которая в итоге будет признана верной. А нам хотелось бы иметь возможность рассмотреть какой-нибудь конкретный пример, демонстрирующий следствия голографического принципа. Например, мы думаем, что энтропия черной дыры в нашем обычном трехмерном пространстве пропорциональна двумерной площади ее горизонта событий. Значит, в принципе мы могли бы описать все возможные микросостояния этой черной дыры в терминах различных величин, заданных на этой двумерной поверхности. Это цель многих физиков-теоретиков, работающих в области квантовой гравитации, но, к сожалению, пока мы не знаем, как ее достичь.

В 1997 году физик-теоретик Хуан Малдасена, американец аргентинского происхождения, перевернул с ног на голову наше понимание квантовой гравитации, обнаружив явный пример голографии в действии.[234] Он рассматривал гипотетическую Вселенную, совершенно непохожую на нашу: в ней, как минимум, энергия вакуума была отрицательной (тогда как в нашей она представляется положительной). Поскольку пустое пространство с положительной энергией вакуума называется пространством де Ситтера, пустое пространство с отрицательной энергией вакуума удобно называть «пространством анти-де Ситтера». Кроме того, Малдасена рассматривал пять измерений вместо наших обычных четырех. И наконец, он работал в рамках очень специфической теории гравитации и материи — «супергравитации», представляющей собой суперсимметричную версию общей теории относительности. Суперсимметрия — это гипотетическая симметрия между бозонами (частицами силы) и фермионами (частицами материи), играющая критически важную роль во многих теориях современной физики элементарных частиц; к счастью, подобные детали не так важны для наших текущих целей.

Малдасена обнаружил, что эта теория — супергравитация в пятимерном пространстве анти-де Ситтера — полностью эквивалентна абсолютно другой теории — четырехмерной теории квантового поля, вообще без гравитационного взаимодействия. Голография в действии: у всего, что только может произойти в этой конкретной пятимерной теории с гравитацией, есть полный аналог в теории без гравитации и без одного пространственного измерения. Мы говорим, что эти теории «дуальны» по отношению друг к другу, — это означает, что они совершенно не похожи внешне, но описывают одно и то же. Словно у нас есть два разных, но при этом эквивалентных языка, и Малдасена нашел розеттский камень, позволяющий переводить тексты с одного языка на другой и обратно. Между состояниями той частной теории гравитации в пяти измерениях и конкретной негравитирующей теории в четырех измерениях существует взаимно-однозначное соответствие. Зная состояние в одной из них, мы можем перевести его на язык другой, и, подчиняясь уравнениям движения для каждой из рассматриваемых теорий, эти состояния эволюционируют в новые, также соответствующие друг другу согласно тому же словарю (по крайней мере, в принципе; на практике мы можем провести вычисления для простых примеров, но более сложные ситуации пока нам не покоряются). Очевидно, что данное соответствие обязано быть нелокальным; невозможно соотнести отдельные точки в четырехмерном пространстве с точками в пятимерном пространстве. Но можно представить, каким образом состояния в одной теории, определенные в какой-то момент времени, будут соотноситься с состояниями в другой теории.

Вечность. В поисках окончательной теории времени - img_67.jpg

Рис. 12.7. Соответствие Малдасены. Теория гравитации в пятимерном пространстве анти-де Ситтера эквивалентна теории без гравитации в четырехмерном плоском пространстве— времени.

Если это не убеждает вас, что пространство—время не фундаментально, то даже представить не могу, какие еще доказательства вам требуются. У нас есть явный пример двух разных версий одной и той же теории, описывающих пространство—время с разным числом измерений! Ни одна из этих теорий не может считаться «единственно верной»; они полностью эквивалентны друг другу.