Р. о. осуществляется с помощью радиометрических сепараторов (рис. 1), в которых датчик регистрирует излучение и преобразует его в электрические импульсы. Из датчика импульсы поступают в радиометр, в котором частота поступления импульсов сравнивается с заранее заданной «пороговой» величиной и при превышении её поступает команда на исполнительный механизм, разделяющий полезное ископаемое на обогащенный продукт и отходы (хвосты).
Режимы радиометрической сепарации: покусковой, при котором регистрируется излучение отдельных кусков полезного ископаемого; порционный — регистрируется излучение порций, состоящих из нескольких кусков, и поточный — регистрируется излучение движущегося непрерывного потока полезного ископаемого. Покусковой режим технологически наиболее эффективен, но наименее производителен.
Р. о. получило распространение при обработке урановых руд, являясь основным методом обогащения этого вида сырья. Кроме того, оно используется для обработки бериллиевых руд (фотонейтронный процесс), золотосодержащих руд и неметаллических полезных ископаемых (фотометрический процесс), алмазосодержащих руд (люминесцентный процесс), железных РУД (гамма-абсорбционный процесс), борных руд (нейтронно-абсорбционный процесс) и др.
Разновидность Р. о. — радиометрическая сортировка, с помощью которой сортируются загруженные полезным ископаемым транспортирующие устройства (вагонетки, автомашины, скипы и др.). Сортировка осуществляется радиометрической контрольной станцией (рис. 2), которая работает с большой производительностью, но коэффициент обогащения полезного ископаемого при этом невелик. В связи с этим они используются главным образом для выделения из горной массы наиболее бедной части полезного ископаемого, удаляемой в отвал.
Лит.: Мокроусов В. А., Гольбек Г. Р., Архипов О. А., Теоретические основы радиометрического обогащения радиоактивных руд, М., 1968; Крейндлин И. И., Маркова Р. А., Паска Л. М., Приборы для радиометрического обогащения руд, М., 1972.
В. А. Мокроусов.
Рис.1. Схема радиометрического сепаратора для естественно-радиоактивных руд: 1 — ленточный конвейер; 2 — экран; 3 — датчик радиометра; 4 — шибер; 5 — электромагнит; 6 — радиометр.
Рис. 2. Радиометрическая контрольная станция: 1 — датчики радиометра; 2 — радиометры; 3 — весы.
Радиометрия
Радиоме'трия (от радио... и ... метрия), совокупность методов измерений активности (числа распадов в единицу времени) нуклидов в радиоактивных источниках. Родоначальниками Р. можно считать Э. Резерфорда и Х. Гейгера, впервые в 1930 осуществивших с помощью искрового счётчика определение числа a-частиц, испускаемых в 1 сек 1 г Ra (удельная активность).
Радиометрические методы различают по способу приготовления источника, по геометрии измерений, по используемым физическим явлениям. К первой группе относятся методы: «бесконечно тонкого» и «бесконечно толстого» слоев, «перевода метки в газ», «полного испарения проб». Ко второй группе — методы определённого телесного угла и «4p-счёта». К третьей группе методов относятся калориметрический, весовой, метод жидкостного сцинтилляционного счёта, методы счётчиков внутреннего наполнения, ионизационных камер, масс-спектрометрический, эмиссионный спектральный, метод совпадений и др.
Для абсолютных измерений активности a- и b-излучателей широко применяют метод 4p-счёта, при котором регистрируются частицы, испускаемые из источника в любом направлении. Активность находят по формуле:
А = N/PK,
где N — скорость счёта с поправками на фон и «мёртвое время», Р — поправка на схему распада, К — коэффициент, учитывающий поглощение в подложке, самопоглощение в источнике и пр. Для измерений твёрдых радиоактивных источников используют газоразрядные 4p-счётчики. Геометрия измерений, близкая к 4p, осуществляется также при применении жидкостных сцинтилляционных счётчиков, счётчиков и камер внутреннего наполнения.
Для абсолютных измерений активности нуклидов, распад которых сопровождается каскадным излучением, применяют совпадений метод. Установки, включающие два детектора, настраивают так, чтобы раздельно регистрировались излучения разного рода или разной энергии. При этом измеряют активность источника с нуклидом, распад которого сопровождается каскадным испусканием именно этих излучений. Активность определяют по формуле:
,где N1 и N2 — скорости счёта, получаемые с каждым из детекторов, N12 — скорость счёта совпадений, а F — некоторая функция от (N1/N2), стремящаяся к 1 при (N2/N1) ® 1. В наиболее простых случаях F (N2/N12) = 1.
Если источники обладают значительной активностью, применяют калориметрический метод, основанный на измерении теплового эффекта, вызванного распадом нуклида в образце. Зная среднюю энергию, поглощаемую в системе образец — калориметр при одном акте распада, и общую интенсивность выделения энергии источником, рассчитывают активность нуклидов. Калориметрический метод является одним из самых старых, но им широко пользуются до сих пор.
Если удаётся выделить нуклид в макроколичествах, его активность может быть найдена по формуле:
А = lМ,
где М — число атомов нуклида в образце, l — постоянная распада (в сек—1), Т — период полураспада (в сек). Этот метод называется весовым, т.к. М рассчитывают, исходя из веса нуклидов в источнике. Весовой метод называется масс-спектрометрическим или методом эмиссионного спектрального анализа, если относительное содержание нуклида в источнике определяют с помощью масс-спектрометра или эмиссионного спектрального анализа.
Массовые измерения активности осуществляют в основном относительными методами, сравнивая измеряемые источники с образцовыми (откалиброванными с высокой точностью радиоактивными растворами, жидкостями, газами, при создании которых используют методы абсолютных измерений активности). Относительные измерения активности нуклидов, распад которых сопровождается g-излучением, обычно осуществляют с помощью ионизационных камер, сцинтилляционных счётчиков и полупроводниковых детекторов. В случае b-излучающих нуклидов используют ионизационные камеры и газоразрядные счётчики. Массовые измерения активности низкоэнергетичных b-излучателей (14C, 3H и др.) осуществляют методом жидкостного сцинтилляционного счёта.
Р. широко используется при решении самых разнообразных задач — от исследований с помощью меченых атомов (см. Изотопные индикаторы) до определения возраста горных пород (см. Геохронология) и в археологии.
Лит.: Караваев Ф. М., Измерения активности нуклидов, М., 1972; Коробков В. И., Лукьянов В. Б., Методы приготовления препаратов и обработки результатов измерений радиоактивности, М., 1973; Туркин А. Д., Дозиметрия радиоактивных газов, М., 1973; Ванг Ч., Уиллис Д., Радиоиндикаторный метод в биологии, пер, с англ., М., 1969; Техника измерений радиоактивных препаратов. Сб. ст., М., 1962; Манн У. Б., Селигер Г. Г., Приготовление и применение эталонных радиоактивных препаратов, [пер. с нем.], М., 1960.
В. А. Баженов.
Радиомиметические вещества
Радиомимети'ческие вещества' (от радио... и греч. mimetikós — подражательный), химические соединения, действие которых на отдельные клетки, органы, ткани и организм животных и человека по многим показателям сходно с биологическим действием ионизирующих излучений. Чаще к Р. в. относят алкилирующие соединения (иприт, этиленимин и др.), оказывающие губительное действие на клетку на всех стадиях её жизненного цикла. Подобно ионизирующим излучениям Р. в. обладают мутагенным и канцерогенным действием, вызывают у млекопитающих острые и хронические дегенеративные изменения в костном мозге, слизистой оболочке кишечника, половых органах, подавляют образование антител, нарушают процесс окислительного фосфорилирования, биосинтез белка и др. Аналогичным действием на организм обладают также вещества, выделяемые из облученного организма. Их чаще называют радиотоксицами. На способности Р. в. подавлять рост некоторых опухолей основаны многие исследования по химиотерапии рака.