В конце 60 — начале 70-х гг. были созданы принципиально новые, более простые устройства Т., применение которых предпочтительнее, если только их чувствительность оказывается достаточной. В этих устройствах тепловое изображение объекта непосредственно (без промежуточного преобразования инфракрасного излучения в электрические сигналы) проецируется на экран, покрытый тонким слоем вещества, которое в результате какого-либо физико-химического процесса, происходящего при его нагреве, изменяет свои оптические характеристики (коэффициент отражения или пропускания видимого света, интенсивность или цвет собственного свечения и т. д.). На экранах таких устройств можно наблюдать видимые изображения объектов и фотографировать их. В качестве температурно-чувствительных веществ используют жидкие кристаллы , кристаллические люминофоры , тонкие плёнки полупроводников , магнитные тонкие плёнки , термочувствительные лаки и краски и др.

  Так, жидкие кристаллы по мере нагревания постепенно изменяют свой цвет (и его оттенки) от красного до фиолетового, причём многокомпонентные смеси холестерических жидких кристаллов имеют температурный интервал цветовой индикации менее 0,1 °С. Термочувствительные краски при нагреве один или два раза изменяют свой цвет (обычно необратимо), фиксируя тем самым одно или два значения температуры, что удобно в тех случаях, когда достаточно узнать, нагрет ли исследуемый объект (например, деталь машины) до некоторой критической температуры. В некоторых полупроводниковых плёнках (особенно в плёнках Se и его производных) с повышением температуры область прозрачности смещается в сторону длинных волн, что позволяет, применяя дополнительный источник видимого света, регистрировать изменение их температуры на 1—5 °С. Применение в Т. люминофоров основано на явлении тушения люминесценции : яркость свечения некоторых люминофоров (например, соединения ZnS CdS Ag Ni). возбуждённых ультрафиолетовым излучением, резко уменьшается по мере их нагревания. Эти люминофоры позволяют визуально наблюдать изменение температуры на 0,2—0,3 °С, причём эффект тушения полностью обратим. Приборы, основанные на применении люминофоров, позволяют видеть не только тепловые лучи, но и радиоволны (см. Радиовидение ). В магнитных тонких плёнках при нагреве изменяется ориентация осей намагничивания магнитных доменов, ориентирующих, в свою очередь, ферромагнитные частицы коллоидного раствора, нанесённого на поверхность плёнки. Этот «магнитный рельеф», возникающий под действием тепловых лучей, при намагничивании плёнки становится видимым в обычном отражённом свете. Рассмотренные методы Т. реализованы в ряде устройств, получивших название термофотоаппарат, визуализатор, термоинтроскоп, радиовизор и др.

  Плёнки вышеуказанных веществ могут наноситься и непосредственно на объект — для изучения распределения температуры его поверхности; это научное направление, получившее название термографии, иногда называется также Т. (в этом случае, однако, регистрируется температура, а не тепловое излучение объекта). К Т. можно отнести также и применение инфракрасных лазеров (например, на парах CO2 , с длиной волны 10,6 мкм, соответствующей максимуму теплового излучения при температуре 23 °С) в целях просвечивания объектов, непрозрачных для видимого света; оно получило развитие в 70-х гг. Т. находит всё более широкое применение в медицинской и технической диагностике, навигации, геологической разведке, метеорологии, дефектоскопии, при научно-технических исследованиях тепловых процессов, а также в военном деле и т. д. (см. Инфракрасная техника ).

  Лит.: Ощепков П. К., Меркулов А. П., Интроскопия, М., 1967; Гуревич В. З., Энергия невидимого света, М., 1973; Левитин И. Б., Инфракрасная техника, Л., 1973; Козелкин В. В., Усольцев И. Ф., Основы инфракрасной техники, М., 1974; Сонин А. С., Степанов Б. М., Приборы на жидких кристаллах, «Природа», 1974, № 11; Клюкин Л. М., Сонин А. С., Степанов Б. М., Фотографируется тепло, «Наука и жизнь», 1975, № 3; Ирисова Н. А., Тимофеев Ю. П., Фридман А. С., Люминесценция позволяет видеть невидимое, «Природа», 1975, № 1.

  К. М. Климов, Ю. П. Тимофеев.

Тепловое движение

Теплово'е движе'ние, беспорядочное (хаотическое) движение микрочастиц (молекул, атомов, электронов и др.), из которых состоят все тела. Т. д. — это особая форма движения материи, качественно отличная от обычного механического движения, при котором все части тела движутся упорядоченно. Наиболее убедительным экспериментальным доказательством Т. д. служит броуновское движение . Закономерности Т. д. изучаются термодинамикой , статистической физикой , кинетикой физической . Кинетическая энергия Т. д. прямо пропорциональна абсолютной температуре, входит составной частью во внутреннюю энергию физической системы.

Тепловое излучение

Теплово'е излуче'ние, температурное излучение, электромагнитное излучение, испускаемое веществом и возникающее за счёт его внутренней энергии (в отличие, например, от люминесценции , возникающей за счёт внешних источников энергии). Т. и. имеет сплошной спектр , положение максимума которого зависит от температуры вещества. С её повышением возрастает общая энергия испускаемого Т. и., а максимум перемещается в область малых длин волн. Т. и. испускают, например, поверхность накалённого металла, земная атмосфера и т. д.

  Т. и. возникает в условиях детального равновесия в веществе (см. Детального равновесия принцип ) для всех безызлучательных процессов, то есть для различных типов столкновений частиц в газах и плазме, для обмена энергиями электронного и колебательного движений в твёрдых телах и т. д. Равновесное состояние вещества в каждой точке пространства — состояние локального термодинамического равновесия (ЛТР) — при этом характеризуется значением температуры, от которого и зависит Т. и. вещества в данной точке.

  В общем случае системы тел, для которой осуществляется лишь ЛТР и различные точки которой имеют различные температуры, Т. и. не находится в термодинамическом равновесии с веществом. Горячие тела испускают больше, чем поглощают, а более холодные — наоборот. Происходит перенос излучения от более горячих тел к более холодным. Для поддержания стационарного состояния, при котором сохраняется распределение температуры в системе, необходим подвод теплоты к более горячим телам и отвод от более холодных; это может осуществляться как в природных условиях (например, в атмосфере Земли), так и искусственно (например, в лампах накаливания).

  При полном термодинамическом равновесии все части системы тел имеют одну температуру и энергия Т. и., испускаемого каждым телом, компенсируется энергией поглощаемого этим телом Т. и. др. тел. В этом случае Т. и. находится в термодинамическом равновесии с веществом и называется равновесным излучением (равновесным является Т. и. абсолютно чёрного тела ). Спектр равновесного излучения не зависит от природы вещества и определяется Планка законом излучения .

  Для Т. и. нагретых тел в общем случае справедлив Кирхгофа закон излучения , связывающий их испускательную и поглощательную способности с испускательной способностью абсолютно чёрного тела.

  При наличии ЛТР, применяя законы излучения Кирхгофа и Планка к испусканию и поглощению Т. и. в газах и плазме, можно изучать процессы переноса излучения. Такое рассмотрение широко используется в астрофизике , в частности в теории звёздных атмосфер.

  Лит.: Планк М., Теория теплового излучения, пер. с нем., Л.— М., 1935; Соболев В. В., Перенос лучистой энергии в атмосферах звезд и планет, М., 1956; Боеворт Р. Ч. Л., Процессы теплового переноса, пер. с англ., М., 1957; Ельяшевич М. А., Атомная и молекулярная спектроскопия, М., 1962.