Первые 3 реакции входят в полный цикл дважды. Времена реакций рассчитаны для условий в центре Солнца: Т = 13 млн К (по другим данным — 16 млн К), плотность Н — 100 г /см3. В скобках указана часть энерговыделения, безвозвратно уходящая с n.

  В CN-цикле ядро 12 С играет роль катализатора. Для Солнца и менее ярких звёзд в полном энерговыделении преобладает рр-цикл, а для более ярких звёзд — CN-цикл.

Табл. 2. — Водородный цикл

Реакция Энерговыделение, Мэв Среднее время реакции
р + р ® D+e+ + v е+ + е ®2g p + D ® 3 He + g 3 Не + 3 Не ® 4 Не+2р 2×0,164 + (2×0,257) 2×1,02 2×5,49 12,85 1,4×1010лет 5,7 сек 106 лет
Итого 4p ® 4 He + 2e+ 26,21 + (0,514)

  Водородный цикл разветвляется на 3 варианта. При достаточно больших концентрациях 4 He и T > (10 ¸ 15) млн К, в полном энерговыделении начинает преобладать др. ветвь рр-цикла, отличающаяся от приведённой в таблице 2 заменой реакции 3 He + 3 He на цепочку:

3 He + 4 He ® 7 Be + g, 7 Be + e ® 7 Li + g,

p + 7 Li ® 24 He,

а при ещё более высоких Т — третья ветвь:

3 He + 4 He ® 7 Be + g, р + 7 Ве ® 8 В + g,

8 B ® 8 Be + e+ + n, 8 Be ® 24 He.

  Для звёзд-гигантов с плотными выгоревшими (по содержанию Н) ядрами существенны гелиевый и неоновый циклы Т. р.; они протекают при значительно более высоких температурах и плотностях, чем рр- и CN-циклы. Основной реакцией гелиевого цикла, идущей, начиная с T » 200 млн К, является так называемый процесс Солпитера: 34 He ® 12 C + g1 + g2 + 7,3 Мэв (процесс не строго тройной, а двухступенчатый, идущий через промежуточное ядро 8 Be). Далее могут следовать реакции 12 C +4 Не ® 16 O + g, 16 O + 4 He ® 20 Ne + g; в этом состоит один из механизмов нуклеогенеза. Возможность процесса Солпитера, а тем самым и нуклеогенеза большинства элементов (предпосылка возникновения всех форм жизни!) связана с таким случайным обстоятельством, как большая «острота» резонанса в ядерной реакции 34 Не ® 12 С, обеспечиваемая наличием подходящего дискретного уровня энергии у ядра 8 Be.

  Если продукты реакций гелиевого цикла вступят в контакт с Н, то осуществляется неоновый (Ne—Na) цикл, в котором ядро 20 Ne играет роль катализатора для процесса сгорания Н в Не. Последовательность реакций здесь вполне аналогична CN-циклу (табл. 3), только ядра 12 C, 13 N, 13 C, 14 N, 15 O, 15 N заменяются соответственно ядрами20 Ne, 21 Na, 21 Ne, 22 Na, 23 Na, 23 Mg.

Табл. 3. — Углеродный цикл

Реакция Энерговыделение, Мэв Среднее время реакции
р + 12 С ® 13 N + g 1,95 1,3×107лет
13 N ® 13 С + е+ + v 1,50(0,72) 7,0 мин
р + 13 С ® 14 N + g 7,54 2,7×106лет
р + 14 N ® 15 O + g 7,35 3,3×108лет
15 O ® 15 N + e+ +v 1,73 + (0,98) 82 сек
р + 15 N ® 12 С + 4 Не 4,96 1,1×105 лет
Итого 4р ®4 Не + 2е+ 25,03 + (1,70)

  Мощность этого цикла как источника энергии невелика. Однако он, по-видимому, имеет большое значение для нуклеогенеза, так как одно из промежуточных ядер цикла (21 Ne) может служить источником нейтронов: 21 Ne + 4 He ® 24 Mg + n (аналогичную роль может играть и ядро С, участвующее в CN-цикле). Последующий «цепной» захват нейтронов, чередующийся с процессами b- -распада, является механизмом синтеза всё более тяжёлых ядер.

  Средняя интенсивность энерговыделения e в типичных звёздных Т. р. по земным масштабам ничтожна. Так, для Солнца (в среднем на 1 г солнечной массы)

Большая Советская Энциклопедия (ТЕ) - i-images-177642680.png
. Это гораздо меньше, например, скорости энерговыделения в живом организме в процессе обмена веществ. Однако вследствие огромной массы Солнца (2×1033г ) полная излучаемая им мощность (4×1026вт ) чрезвычайно велика (она соответствует ежесекундному уменьшению массы Солнца на ~ 4 млн. т ) и даже ничтожной её доли достаточно, чтобы оказывать решающее влияние на энергетический баланс земной поверхности, жизни и т. д.

  Из-за колоссальных размеров и масс Солнца и звёзд в них идеально решается проблема удержания (в данном случае — гравитационного) и термоизоляции плазмы: Т. р. протекают в горячем ядре звезды, а теплоотдача происходит с удалённой и гораздо более холодной поверхности. Только поэтому звёзды могут эффективно генерировать энергию в таких медленных процессах, как рр- и CN-циклы (табл. 2 и 3). В земных условиях эти процессы практически неосуществимы; например, фундаментальная реакция   р + p ® D + е+ + n непосредственно вообще не наблюдалась.

  Т. р. в земных условиях. На Земле имеет смысл использовать лишь наиболее эффективные из Т. р., связанные с участием изотопов водорода D и Т. Подобные Т. р. в сравнительно крупных масштабах осуществлены пока только в испытательных взрывах термоядерных, или водородных бомб (см. Ядерное оружие ). Энергия, высвобождающаяся при взрыве такой бомбы (1023 — 1024эрг ), превышает недельную выработку электроэнергии на всём земном шаре и сравнима с энергией землетрясений и ураганов. Вероятная схема реакций в термоядерной бомбе включает Т. р. 12, 7, 4 и 5 (табл. 1). В связи с термоядерными взрывами обсуждались и др. Т. р., например 16,14, 3.

  Путём использования Т. р. в мирных целях может явиться управляемый термоядерный синтез (УТС), с которым связывают надежды на решение энергетических проблем человечества, поскольку дейтерий, содержащийся в воде океанов, представляет собой практически неисчерпаемый источник дешёвого горючего для управляемых Т. р. Наибольший прогресс в исследованиях по УТС достигнут в рамках советской программы «Токамак». Аналогичные программы к середине 70-х гг. 20 в. стали энергично развиваться и в ряде др. стран. Для УТС наиболее важны Т. р. 7,5 и 4 [а также 12 для регенерации дорогостоящего Т]. Независимо от энергетических целей термоядерный реактор может быть использован в качестве мощного источника быстрых нейтронов. Однако значительное внимание привлекли к себе и «чистые» Т. р., не дающие нейтронов, например 10, 20 (табл. 1).

  Лит.: Арцимович Л. А., Управляемые термоядерные реакции, 2 изд., М., 1963; Франк-Каменецкий Д. А., Физические процессы внутри звезд, М., 1959; Термоядерные реакции, в кн.: Проблемы современной физики, М., 1954, в. 1; Fowler W. A., Caughlan G. R., Zimmerman В. A., «Annual Review of Astronomy and Astrophysics», 1967, v. 5, p. 525.

  В. И. Коган.

Термоядерный ракетный двигатель

Термоя'дерный раке'тный дви'гатель, гипотетический ядерный ракетный двигатель , в котором для создания тяги предполагается использовать истечение продуктов управляемой термоядерной реакции или рабочего тела (например, водорода), нагретого за счёт энергии, высвобождающейся в результате этой реакции. Скорость реактивной струи Т. р. д. составит предположительно несколько тысяч км/сек. Потенциальное применение Т. р. д. — околоземные и межпланетные космические полёты.