В некоторых случаях можно наблюдать интерференцию звуковых волн. Если на вращающейся доске укрепить два приспособления, издающие звук одной частоты, то, постепенно поворачивая доску, можно будет услышать, как звук становится то громче, то тише. Это происходит потому, что расстояние между источниками звука и вашим ухом меняется и звуковые волны иногда доходят до уха в совпадающих фазах, а иногда в противоположных. Соответственно их амплитуды или складываются, или вычитаются.
Рис. 86. Два источника колеблются с одинаковой частотой; в любую точку на поверхности воды приходят одновременно две волны (А). Если в точку K поверхности воды придут две волны, вершины которых совпадают, произойдёт усиленный подъём воды (Б). Для этого нужно, чтобы на отрезке MN укладывалось целое число (d) длин волн (Г). Затем вершины в точке K одновременно сменятся впадинами, и вода сильно опустится (В). Это будет в том случае, если на отрезке MN уложится нечётное число полуволн (Д)
Помимо интерференции волны обладают ещё одним свойством: они могут огибать небольшие препятствия, встречающиеся на их пути. «Небольшие» означает, что эти препятствия должны ненамного превышать длину набегающей на них волны. Всем известно, что даже мелкие предметы отбрасывают тень, т. е. свет, встречая их на своём пути, не проходит дальше. В то же время, для того чтобы воспрепятствовать распространению звука, требуется предмет больших размеров, например гора или большой дом. Длина звуковой волны в среднем равна нескольким метрам, что вполне соизмеримо с небольшими домами или другими предметами. Поэтому такие предметы не мешают слышать, что происходит за ними, т. е. не отбрасывают звуковой «тени». Явление огибания препятствий распространяющимися волнами называют дифракцией.
Дифракцию можно наблюдать, поставив на пути распространения волн в бассейне или расположив против луча света экран с маленьким отверстием. Пройдя через отверстие, волны не продолжают своего движения прямолинейно, а расширяются, т. е. отверстие как бы порождает новые волны. Происходит это из-за того, что волны не упираются в края отверстия, а огибают их. Если отверстие сделать достаточно малым, то оно будет вести себя в точности как новый источник волн. Наблюдая за распространением света, итальянский физик и астроном Франческо Гримальди открыл в XVII в. явление дифракции и дал ему это название. Именно он впервые предположил, что свет является волной:
«Как вокруг камня, брошенного в воду, образуются волны, так и препятствие, помещённое на пути света, порождает в световом флюиде волны, отклоняющиеся за отверстием».
Он же впервые высказал предположение о связи цветного зрения с частотой колебания света.
Рис. 87. Эффект Доплера (пояснения в тексте)
Существует ещё одно явление, характерное для всех волн и имеющее большое практическое значение. Это явление называют эффектом Доплера (рис. 87) в честь предсказавшего его в 1842 г. австрийского физика Кристиана Доплера (1803–1853), изучавшего движение тел – источников звука или света.
Вспомните, когда проносящийся мимо вас поезд или машина с сиреной достигают ближайшей к вам точки, а затем начинают удаляться, вы слышите, как высота издаваемого ими звука резко снижается. Это происходит потому, что от источника звука в вашем направлении движутся звуковые волны. Когда издающий звук предмет приближается к вам, каждая следующая волна возникает в более близкой к вам точке, чем предыдущая. Поэтому она достигает ваших ушей чуть раньше, чем если бы источник звука был относительно вас неподвижен. Волны как бы сжимаются, приобретая более высокую частоту, чем изначально издаваемый звук. И наоборот, когда поезд или автомашина удаляются от вас, каждая следующая волна запаздывает по отношению к предыдущей и воспринимаемая слухом звуковая волна снижает свою частоту, в результате звук воспринимается как более низкий.
Эффект Доплера остаётся справедливым и для электромагнитных волн. В частности, он используется в радарных устройствах, применяемых сотрудниками инспекции дорожного движения для определения скорости автомобилей. Пистолет-радар излучает сигнал в области ультракоротких радиоволн, который отражается от металлического кузова машины и поступает обратно на радар, но уже с доплеровским изменением частоты. Зная разницу между частотой, испущенной радаром, и частотой, им принятой, прибор точно определяет скорость автомобиля и показывает её на экране.
Доплером было показано, что при приближении источника света к наблюдателю частота световых колебаний представляется ему больше, чем при неподвижном источнике, т. е. цвет излучения смещается в сторону ультрафиолета. Если же источник удаляется от наблюдателя, то цвет смещается в красную сторону спектра. В дальнейшем методы, основанные на эффекте Доплера, стали широко применяться в астрофизике для изучения движения звёзд. Этот эффект является причиной красного смещения, с помощью которого было установлено, что Вселенная расширяется и галактики разбегаются. Открытие красного смещения принципиально изменило взгляды на происхождение и эволюцию Вселенной, о чём будет рассказано в дальнейшем.
1. Какие процессы могут происходить в результате интерференции?
2. Как называется явление огибания препятствий распространяющимися волнами?
3. На основании какого явления Франческо Гримальди в XVII в. предположил, что свет обладает волновыми свойствами?
4. В чём проявляется эффект Доплера?
Налейте в широкий плоский сосуд немного воды. Погрузите в воду возле одной из стенок сосуда две палочки и постепенно покачивайте ими по очереди или одновременно с различной частотой. Пронаблюдайте, как будет изменяться картина распространения волн по сосуду.
§ 33 Потенциальная энергия
Теперь, познакомившись с основными физическими явлениями и процессами, мы приступим к изучению самой основной и фундаментальной проблемы физики, можно сказать, самой её сути. Эту суть называют энергией. Для того чтобы в мире хоть что-нибудь происходило, требуется её «вмешательство». Один из основных законов физики – закон сохранения энергии – утверждает, что существует определённая величина, называемая энергией, которая никогда и ни при каких обстоятельствах не изменяется. Однако этот закон справедлив только для изолированных систем, т. е. для тех случаев, когда энергия не поступает в систему извне и не выходит из неё наружу. По типу изолированности от внешней среды все системы можно разделить на три типа (рис. 88).
1. Открытые системы обмениваются с внешней средой веществом и энергией.
2. Закрытые системы обмениваются с внешней средой только энергией, но не веществом.
3. Изолированные системы не обмениваются с внешней средой ни энергией, ни веществом.
Кастрюля с кипятком без крышки – это открытая система, так как кастрюля будет остывать и вода из неё будет испаряться. Если эту кастрюлю закрыть крышкой, то она станет закрытой системой, поскольку остывать она всё равно будет, но количество воды в ней будет оставаться неизменным. И наконец, если закрытую кастрюлю завернуть в четыре ватных одеяла, то она, хотя и с некоторой натяжкой, станет изолированной системой.
Закон сохранения энергии утверждает, что в изолированной системе энергия всегда и при любых обстоятельствах останется неизменной, что бы в этой системе ни происходило. Если же мы обнаружим, что энергия в ней уменьшилась или увеличилась, значит, наша система не совсем изолированная, и это изменение сопровождается, соответственно, увеличением или уменьшением энергии где-то в другом месте.