Возьмём какой-нибудь прозрачный окрашенный предмет, например цветное стекло или пластик. Положим его на стол и посмотрим на него в падающем сверху свете. Допустим, что его цвет будет синим. Это значит, что те лучи, которые он от себя отражает и которые после этого попадают в наш глаз, будут синими, т. е. в глаза попадает излучение, имеющее такую длину волны, которая воспринимается человеком как синий цвет. Теперь посмотрим через этот прозрачный предмет на свет. Мы убедимся, что всё, что мы видим, станет тоже синим. А это означает, что наше стекло пропускает через себя только синее излучение. Можно проделать наблюдения с прозрачными предметами любого цвета и убедиться в том, что во всех случаях они будут отражать и пропускать одно и то же излучение. Это значит, что предмет данного цвета выбирает для отражения и пропускания только небольшую часть из всего спектра белого света. Что происходит с остальной частью спектра? Она поглощается окрашенным предметом.
Если мы имеем дело с непрозрачным предметом, то он не пропускает никакого света, а может только отражать и поглощать. Белый предмет отражает весь видимый спектр, потому он и выглядит как белый. Чёрный же не отражает никакого света – все падающие на него лучи он поглощает. Поэтому от него в наш глаз не попадает никакого излучения, что воспринимается как чернота. Именно по этой причине люди в жару стараются носить белую или светлую одежду, в наибольшей степени отражающую солнечные лучи, тогда как одежда чёрного цвета большинство лучей поглощает и от этого нагревается. Всё же цветные предметы поглощают свет избирательно, в определённых областях видимого спектра, а все остальные падающие на них волны, отражают. Этот отражённый свет и попадает нам в глаза, вызывая ощущение определённого цвета. Соответственно, сочетание всех волн, которые поглощаются веществом, образует его спектр поглощения, а тех, которые им отражаются, – спектр отражения. Таким же образом для прозрачных тел можно определить спектр пропускания, который, как мы уже сказали, в основном совпадает со спектром отражения.
Но для того чтобы что-то могло поглотить или отразить свет, этот свет должен откуда-то прийти. Другими словами, всякий свет должен иметь источник. Таким источником может быть Солнце, Луна, звёзды, электрическая лампа, свеча и многое другое.
Рис. 110. Непрерывный (А) и линейчатый (Б) спектры
Свет, испускаемый этим источником, иногда может быть белым, как свет Солнца, а иногда в нём будут преобладать волны с какой-то определённой длиной. Так, свет лампочки накаливания является почти белым, но с некоторым преимуществом жёлтой части спектра, а цвет огня в печи или костре имеет хорошо выраженную красную составляющую. В то время, когда не было цветных телевизоров, изображение на экранах называлось чёрно-белым, однако «белый» фон был не совсем таким, в нём явно просматривался голубой оттенок. Отсюда и названия передач старого телевидения, например «Голубой огонёк». Совокупность волн всех частот, испускаемых данным источником света, называют его спектром испускания.
Для изучения спектров, испускаемых различными источниками, применяют приборы, называемые спектрометрами. Если направить спектрометр на Солнце или электрическую лампу накаливания, можно увидеть полосу, в которой представлены все цвета спектра, плавно переходящие друг в друга. Такой спектр называют сплошным или непрерывным (рис. 110, А). Другой вид имеют спектры, испускаемые светящимися газами. Они состоят из чётко разграниченных линий. Каждая линия чётко отграничена от соседних линий чёрными полосами и представляет собой узкий интервал, в котором содержится излучение, которое соответствует определённой длине волны. Такой спектр принято называть линейчатым или прерывистым (рис. 110, Б). С помощью спектрометра можно исследовать как спектры испускания, так и спектры поглощения.
Первым исследователем, обратившим внимание на спектральные линии, был Йозеф Фраунгофер (1787–1826). В его честь эти линии были названы фраунгоферовыми линиями. В 1850 г. Густав Кирхгоф (1824–1887) и Роберт Бунзен (1811–1899) пришли к выводу, что каждый химический элемент имеет свой уникальный линейчатый спектр и, в частности, по спектру небесных светил можно определить их химический состав. В результате их исследований в науке появился новый метод, называемый спектральным анализом, с помощью которого можно определять состав веществ даже на больших расстояниях. С помощью этого метода инертный газ гелий был открыт на Солнце почти на тридцать лет раньше, чем на Земле, и именно в честь Солнца получил своё название.
1. Как называется разложение спектра на различные цветовые составляющие?
2. Какие виды спектров могут быть характерными для физического тела?
3. От чего зависит воспринимаемый глазом цвет предмета?
4. Для каких целей используют спектральный анализ?
1. Подберите эпиграф к данному параграфу.
2. Зажгите газовую горелку и бросьте в её пламя щепотку поваренной соли. Вы увидите, как пламя окрасится в жёлтый цвет. Как вы думаете, почему? В дальнейшем можно поочерёдно бросать в пламя различные порошки или брызгать различными негорючими жидкостями. Пронаблюдайте, как в каждом случае будет изменяться цвет пламени.
Рис. 111. Иллюстрация к заданию 3
3. Выполните практическую работу «Разложение света». Для этого вам понадобится кусок картона, обычный стакан с водой и белая бумага (рис. 111). Прорежьте в картоне длинную узкую щель. На солнечном месте поставьте на белую бумагу стакан, а между ним и солнцем – картон с щелью. Вы увидите, что солнечные лучи, проходя через щель, а затем через воду в стакане, разлагаются на разные цвета. На бумаге появится последовательность цветных полосок.
§ 43 Атомная модель Бора
Спектральный анализ в сочетании с квантовой теорией позволили датскому физику Нильсу Бору (1885–1962) предложить в 1913 г. новую модель атома. Мы уже говорили о том, что главный недостаток модели атома, предложенной Резерфордом, заключался в том, что электрон, двигаясь по орбите вокруг атомного ядра, должен постоянно излучать энергию и, потеряв её, через самое непродолжительное время упасть на ядро. Бор предположил, что электроны в атомах могут находиться в некоторых стабильных состояниях, т. е., согласно термину Резерфорда, на определённых орбитах. Эти орбиты не могут находиться на любом расстоянии от ядра, для них существует набор определённых фиксированных положений, которые называют квантовыми уровнями. Энергия электрона зависит от расстояния его орбиты до атомного ядра. Электроны, находящиеся на таких орбитах, не излучают электромагнитных волн, поскольку, теряя энергию, он должен перейти на более низкую орбиту.