Физико-химические М. воспроизводят физическими или химическими средствами биологические структуры, функции или процессы и, как правило, являются далёким подобием моделируемого биологического явления. Начиная с 60-х гг. 19 в. были сделаны попытки создания физико-химической М. структуры и некоторых функций клеток. Так, немецкий учёный М. Траубе (1867) имитировал рост живой клетки, выращивая кристаллы CuSО4 в водном растворе К4 [Fе(СN)6 ]: французский физик С. Ледюк (1907), погружая в насыщенный раствор К3 РО4 сплавленный СаСl2 , получил — благодаря действию сил поверхностного натяжения и осмоса — структуры, внешне напоминающие водоросли и грибы. Смешивая оливковое масло с разными растворимыми в воде веществами и помещая эту смесь в каплю воды, О. Бючли (1892) получал микроскопические пены, имевшие внешнее сходство с протоплазмой; такая М. воспроизводила даже амёбоидное движение. С 60-х гг. 19 в. предлагались также разные физические М. проведения возбуждения по нерву. В М., созданной итальянским учёным К. Маттеуччи и немецким — Л. Германом, нерв был представлен в виде проволоки, окруженной оболочкой из проводника второго рода. При соединении оболочки и проволоки с гальванометром наблюдалась разность потенциалов, изменявшаяся при нанесении на участок «нерва» электрического «раздражения». Такая М. воспроизводила некоторые биоэлектрические явления при возбуждении нерва. Французский учёный Р. Лилли на М. распространяющейся по нерву волны возбуждения воспроизвёл ряд явлений, наблюдаемых в нервных волокнах (рефрактерный период, «всё или ничего» закон , двустороннее проведение). М. представляла собой стальную проволоку, которую помещали сначала в крепкую, а затем в слабую азотную кислоту. Проволока покрывалась окислом, который восстанавливался при ряде воздействий; возникший в одном участке процесс восстановления распространялся вдоль проволоки. Подобные М., показавшие возможность воспроизведения некоторых свойств и проявлений живого посредством физико-химических явлений, основаны на внешнем качественном сходстве и представляют лишь исторический интерес.

  Позднее более сложные М., основанные на гораздо более глубоком количественном подобии, строились на принципах электротехники и электроники. Так, на основе данных электрофизиологических исследований были построены электронные схемы, моделирующие биоэлектрические потенциалы в нервной клетке, её отростке и в синапсе . Построены также механические машины с электронным управлением, моделирующие сложные акты поведения (образование условного рефлекса , процессы центрального торможения и пр.). Этим М. обычно придают форму мыши, черепахи, собаки (см. рис. 1—3 ). Такие М. также слишком упрощают явления, наблюдаемые в организме, и имеют большее значение для бионики , чем для биологии.

  Значительно бо'льшие успехи достигнуты в моделировании физико-химических условий существования живых организмов или их органов и клеток. Так, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), имитирующие внутреннюю среду организма и поддерживающие существование изолированных органов или культивируемых вне организма клеток (см. Культуры тканей ).

  М. биологических мембран (плёнка из природных фосфолипидов разделяет раствор электролита) позволяют исследовать физико-химические основы процессов транспорта ионов и влияние на него различных факторов. С помощью химических реакций, протекающих в растворах в автоколебательном режиме, моделируют колебательные процессы, характерные для многих биологических феноменов, — дифференцировки, морфогенеза, явлений в сложных нейронных сетях и т. д.

  Математические М. (математическое и логико-математическое описания структуры, связей и закономерностей функционирования живых систем) строятся на основе данных эксперимента или умозрительно, формализованно описывают гипотезу, теорию или открытую закономерность того или иного биологического феномена и требуют дальнейшей опытной проверки. Различные варианты подобных экспериментов выявляют границы применения математической М. и дают материал для её дальнейшей корректировки. Вместе с тем «проигрывание» математического М. биологического явления на ЭВМ часто позволяет предвидеть характер изменения исследуемого биологического процесса в условиях, трудно воспроизводимых в эксперименте. Математическая М. в отдельных случаях позволяет предсказать некоторые явления, ранее не известные исследователю. Так, М. сердечной деятельности, предложенная голландскими учёными ван дер Полом и ван дер Марком, основанная на теории релаксационных колебаний, указала на возможность особого нарушения сердечного ритма, впоследствии обнаруженного у человека. Из математической М. физиологических явлений следует назвать также М. возбуждения нервного волокна, разработанную английскими учёными А. Ходжкином и А. Хаксли. На основе теории нервных сетей американских учёных У. Мак-Каллока и У. Питса строятся логико-математические модели взаимодействия нейронов . Системы дифференциальных и интегральных уравнений положены в основу моделирования биоценозов (В. Вольтерра, А. Н. Колмогоров). Марковская математическая М. процесса эволюции построена О. С. Кулагиной и А. А. Ляпуновым. И. М. Гельфандом и М. Л. Цетлиным на основе теории игр и теории конечных автоматов разработаны модельные представления об организации сложных форм поведения. В частности, показано, что управление многочисленными мышцами тела строится на основе выработки в нервной системе некоторых функциональных блоков — синергий, а не путём независимого управления каждой мышцей. Создание и использование математических и логико-математических М., их совершенствование способствуют дальнейшему развитию математической и теоретической биологии.

  Лит.: Моделирование в биологии. Сб. ст., пер. с англ., М., 1963; Новик И. Б., О моделировании сложных систем, М., 1965; Кулагина О. С., Ляпунов А. А., К вопросу о моделировании эволюционного процесса, в кн.: Проблемы кибернетики, в. 16, М., 1966; Модели структурно-функциональной организации некоторых биологических систем. [Сб. ст.], М., 1966; Математическое моделирование жизненных процессов. Сб. ст., М., 1968; Теоретическая и математическая биология, пер. с англ., М., 1968; Моделирование в биологии и медицине, Л., 1969; Бейли Н., Математика в биологии и медицине, пер. с англ., М., 1970; Управление и информационные процессы в живой природе, М., 1971; Эйген М., Молекулярная самоорганизация и ранние стадии эволюции, «Успехи физических наук», 1973, т. 109, в. 3.

  Е. Б. Бабский, Е. С. Геллер.

Большая Советская Энциклопедия (МО) - i009-001-233249453.jpg

Рис. 3. К. Шеннон пускает «мышь» в лабиринт.

Большая Советская Энциклопедия (МО) - i010-001-257700190.jpg

Рис. 2. «Мышь» К. Шеннона — автомат, моделирующий «обучение» при повторном прохождении лабиринта.

Большая Советская Энциклопедия (МО) - i010-001-280987085.jpg

Рис. 1. Общий вид «черепахи» Института автоматики и телемеханики АН СССР.

Модели (в экономике)

Моде'ли в экономике используются начиная с 18 в. В «Экономических таблицах» Ф. Кенэ , которые К. Маркс назвал идеей «...бесспорно самой гениальной из всех, какие только выдвинула до сего времени политическая экономия» (Маркс К. и Энгельс Ф., Соч., 2 изд., т. 26, ч. 1, с. 345), по существу была впервые сделана попытка формализации всего процесса общественного воспроизводства . Огромное влияние на экономическую науку оказали схемы воспроизводства, созданные Марксом и развитые В. И. Лениным. Непосредственным следствием этого подхода явилась теория межотраслевого баланса (см. Баланс межотраслевой ).

  Особенно широко М. употребляются в экономических исследованиях начиная с середины 20 в., когда возник ряд новых областей математики (см., например, Операций исследование ) и были созданы электронные вычислительные машины (ЭВМ). Экономико-математические М. используют за рубежом такие учёные, как Л. Вальрас , Дж. Нейман (создатель первой ЭВМ и один из основоположников игр теории и вообще математической экономики), Дж. М. Кейнс , Р. Фриш, Я. Тинберген, П. Сэмюэлсон , К. Арроу, В. Леонтьев , а также Г. Дж. Данциг, Дж. Дебре, Т. Купманс, Х. Никайдо, М. Морисима, Р. Харрод, Дж. Хикс.