В аппарате физической теории П. п. используется прежде всего для выбора граничных условий к соответствующим уравнениям динамики, что обеспечивает однозначность их решения. Так, при решении электродинамических Максвелла уравнений П. п. делает выбор между опережающими и запаздывающими потенциалами в пользу последних. Аналогично в квантовой теории поля П. п. делает однозначной технику Фейнмана диаграмм — важный инструмент теоретического описания взаимодействующих полей или частиц. Кроме того, П. п. позволяет установить общие свойства величин, описывающих реакцию физической системы на внешние воздействия. Сюда относятся аналитические свойства диэлектрической проницаемости системы как функции частоты (т. н. дисперсионные соотношения Крамерса — Кронига). Др. важный пример — дисперсионные соотношения в теории рассеяния сильно взаимодействующих частиц (адронов ). Эти соотношения — уникальный образец точной зависимости между непосредственно наблюдаемыми величинами (амплитудой упругого рассеяния вперёд и полным сечением), выведенной без использования каких-либо модельных представлений об элементарных частицах. Особенно возросла роль П. п. в теории элементарных частиц с возникновением в ней особого аксиоматического подхода, ставящего своей целью описание взаимодействий частиц непосредственно на основе общих принципов (постулатов) теории. В аксиоматическом подходе, к числу достижений которого относится вывод дисперсионных соотношений, П. п. отводится конструктивная роль одного из главных (наряду с требованиями теории относительности и квантовой теории) постулатов. (См. Квантовая теория поля , V.)

  П. п. безусловно подтверждается экспериментом в макроскопической области и общечеловеческой практикой. Однако его справедливость в области субъядерных масштабов, изучаемой физикой элементарных частиц, не очевидна. Это связано с тем, что под событием в формулировке П. п. понимается «точечное» событие, происходящее в данной точке пространства в данный момент времени; соответственно П. п., о котором до сих пор шла речь, называется также принципом микроскопической причинности (см. Микропричинности условие ). Между тем ограничения, вытекающие из квантовой теории и теории относительности, делают невозможной физическую реализацию точечного события: любое событие, т. е. любой акт взаимодействия частиц, неизбежно имеет конечную протяжённость в пространстве и времени. Поэтому в области малых масштабов П. п. теряет своё непосредственное физическое содержание и становится формальным требованием. Это позволяет говорить о возможном нарушении П. п. «в малом», разумеется, при сохранении его справедливости в больших масштабах пространства-времени. Такой «ослабленный» П. п. называется «принципом макроскопической причинности»; его количественные формулировки, адекватно отражающей указанные выше ограничения, ещё нет. Этот принцип лежит в основе многочисленных попыток обобщения квантовой теории поля, относящихся к нелокальной квантовой теории поля .

  П. п., с которым имеет дело современная физика, является конкретно-физическим утверждением, существенно более узким по своему содержанию, чем общее философское понятие причинности — взаимной обусловленности, детерминированности последовательности событий. Проблема причинности приобрела большую остроту в период становления квантовой механики , когда широко обсуждался вопрос, противоречит ли детерминизму вероятностное описание микроявлений. К отрицательному ответу на этот вопрос привело понимание необходимости отказаться от прямолинейного детерминизма классической механики при рассмотрении статистических закономерностей микромира. Кажущееся противоречие с общим П. п. объясняется непригодностью классической физики для описания микрообъектов. Переход к адекватному описанию на языке волновых функций приводит к тому, что и в квантовой механике начальное состояние системы полностью определяет всю последующую её эволюцию (при известных взаимодействиях системы).

  Проблема соблюдения причинности в философском смысле («общего П. п.») сохраняет свою остроту и сейчас при анализе возможных форм нарушения физического П. п. «в малом»; такой анализ стимулируется разработкой нелокальной теории поля, исследованием проблемы движения со сверхсветовыми скоростями, а также специальными экспериментами с целью проверки П. п. Этот анализ должен выяснить, какие формы нарушения П. п. ведут к непривычной, а какие — к недопустимой, с точки зрения общего П. п., ситуациям. Например, замена исходного П. п. на противоположное утверждение («прошлое не влияет на будущее») не противоречит общему П. п., хотя и ведёт к в высшей степени непривычным следствиям. В этом случае цепочка причинно-следственных связей не разрывается, а предстаёт в обращенном во времени виде. Противоречие с общим П. п. возникает в случае, если предположить, что причинная связь может быть направлена и вперёд и назад во времени. При этом можно было бы осуществить замкнутый цикл причинно-следственной связи, что привело бы к нарушению принципа «событие-следствие не влияет на породившую его событие-причину». Этот принцип имеет существенно более широкую и адекватную общему П. п. формулировку, чем исходный П. п. Если бы следствие было способно влиять на свою собственную причину, то это влияние могло бы выразиться в исчезновении события-причины, что, очевидно, повлекло бы за собой разрыв причинно-следственной связи. Например, испущенная излучателем волна, если бы она была способна возвратиться после отражения обратно в более ранний момент времени, могла бы взорвать излучатель ещё до того, как он начал работать. Из этих же соображений следует принципиальная невозможность путешествия на «машине времени» в прошлое.

  С П. п. в современной физике связан комплекс сложных и глубоких проблем, которые ещё ждут своего решения.

  Лит.: Киржниц Д. А., Сазонов В. Н. (ред.), Сверхсветовые движения и специальная теория относительности, в кн.: Эйнштейновский сборник, М., 1974; см. также лит. при ст. Квантовая теория поля , Нелокальная квантовая теория поля .

  Д. А. Киржниц.

Причинность

Причи'нность, генетическая связь между отдельными состояниями видов и форм материи в процессах её движения и развития. Возникновение любых объектов и систем и изменение их характеристик (свойств) во времени имеют свои определяющие основания в предшествующих состояниях материи. Эти основания называются причинами , а вызываемые ими изменения — следствиями (иногда — действиями).

  Вопрос о П. непосредственно связан с пониманием принципов строения материального мира и его познания. На основе П. организуется материально-практическая деятельность человека и вырабатываются научные прогнозы. Всё это обусловливает остроту проблемы П. в философии и науке вообще (см. Детерминизм и Индетерминизм ). Проблема П. тесно связана с основным вопросом философии : «субъективистская линия в вопросе о причинности есть философский идеализм...» (Ленин В. И., Полное собрание соч., 5 изд., т. 18, с. 159).

  Сущностью П. является производство причиной следствия. П. есть внутренняя связь между тем, что уже есть, и тем, что им порождается, что ещё только становится. Этим П. принципиально отличается от др. форм связей, для которых характерен тот или иной тип упорядоченной соотнесенности одного явления другому.

  П. объективна; она есть присущее самим вещам внутреннее отношение. П. всеобща, т.к. нет явлений, которые не имели бы своих причин, как нет явлений, которые не порождали бы тех или иных следствий.

  Связь причины и следствия является необходимой: если есть причина и налицо соответствующие условия, то неизбежно возникает следствие, причём оно всегда порождается данной причиной при тех же условиях и во всех др. случаях. Следствие, произведённое некоторой причиной, само становится причиной другого явления; последнее, в свою очередь, оказывается причиной третьего явления и т.д. Эту последовательность явлений, связанных друг с другом отношением внутренней необходимости, называется причинной или причинно-следственной цепью. Её можно назвать «цепью причинения». Любая из цепей причинения не имеет ни начала, ни конца. Попытки найти абсолютно «первую» или «последнюю» причины означают обращение в той или иной форме к чуду, сверхъестественной силе.