x' = f (х, у ), y' = jq (х, у ),

где х, у — координаты прообраза, а x’, y' — координаты образа в одной и той же системе координат.

  Многие важные классы точечных П. образуют группу , т. е. вместе с любыми двумя П. содержат их произведение (результат последовательного применения), а вместе с каждым П. содержат обратное П. Наиболее важные примеры групп точечных П. плоскости таковы:

1) группа вращений плоскости вокруг начала координат:

x' = х cosa — у sina,

y' = х sina + у cosa,

где a — угол поворота.

  2) Группа параллельных переносов, при которых все точки смещаются на один и тот же вектор ai + bj :

x' = х + а, y' = у + b.

  3) Группа движений, состоящая из П., не изменяющих расстояния между точками и ориентации плоскости:

x' = х cosa — у sina + a1 ,

y' = х sina + у cosa + b1 .

  См. также Движение в геометрии.

  4) Группа движений и зеркальных отражений, состоящая из П., не изменяющих расстояния между точками плоскости. Совокупность движений и зеркальных отражений, совмещающих некоторую фигуру с собой, называется группой симметрии этой фигуры. Эта группа определяет свойства симметрии фигуры. Например, группа симметрии правильного тетраэдра состоит из 4! = 24 П., переставляющих между собой его вершины.

  5) Группа П. подобия, порождаемая П. движения, зеркального отражения и гомотетии .

  6) Группа аффинных П., состоящая из взаимно однозначных отображений плоскости на себя, при которых прямые переходят в прямые:

Большая Советская Энциклопедия (ПР) - i-images-172875929.png
,
Большая Советская Энциклопедия (ПР) - i-images-114802536.png

  Если c1 = c2, то П. называется центро-аффинным, а если D = 1, то — экви-аффинным; экви-аффинные П. не изменяют площади фигур. См. также Аффинные преобразования .

  7) Группа проективных П., состоящая из взаимно однозначных П. расширенной плоскости (дополненной бесконечно удалённой прямой), при которых прямые линии переходят в прямые:

Большая Советская Энциклопедия (ПР) - i-images-101194749.png
,
Большая Советская Энциклопедия (ПР) - i-images-192343976.png

  Из этой записи видно, что прямая ах + by + с = 0 переходит при этом П. в бесконечно удалённую прямую. См. также Проективное преобразование .

  8) Группа круговых П. (или П. обратными радиусами-векторами), порождаемая П. движения, зеркального отражения, подобия и инверсий . Если точки плоскости изобразить комплексными числами, то П. этой группы запишутся в виде:

Большая Советская Энциклопедия (ПР) - i-images-158599165.png
 или
Большая Советская Энциклопедия (ПР) - i-images-122293537.png
,

где w = x' + iy’, z = x + iy,

Большая Советская Энциклопедия (ПР) - i-images-163634111.png
= x - iy. Т. о., они совпадают с дробно-линейными преобразованиями (см. Дробно-линейные функции ). П. этой группы обладают круговым свойством, т. е. переводят совокупность прямых и окружностей на плоскости в себя. Они обладают также свойством конформности (см. Конформное отображение ). П. плоскости, обладающее круговым свойством, принадлежит всегда группе круговых П.

  Группы 1—7 являются линейными группами, т.к. они переводят прямые линии в прямые. При этом группы 1 и 2 являются подгруппами группы 3, каждая следующая группа (4, 5, 6, 7) содержит в себе предыдущую как часть. Группы 1—6 можно охарактеризовать как совокупность проективных П., оставляющих неизменным некоторый образ на расширенной плоскости. Например, аффинные П. являются П., оставляющими на месте бесконечно удалённую прямую. Группа 8 является примером нелинейной группы, т.к. при П. этой группы прямые линии могут перейти в окружности. П. групп 1—8 являются бирациональными преобразованиями , т. е. такими П., при которых x' и y' рационально выражаются через х и у и обратно.

  Наряду с точечными П., при которых устанавливается соответствие между точками, в геометрии применяются П. фигур, при которых устанавливается соответствие между самими фигурами. Например, в некоторых задачах геометрии заменяют все окружности окружностями же, увеличивая их радиус на определённую величину. Этим определяется П. многообразия окружностей в себя. Рассматриваются также П., изменяющие природу элементов, т. е. переводящие точки в линии, линии в точки и т.д. Например, можно поставить в соответствие каждой точке М (х, у ) прямую ux' + uy' = 1, где u и u некоторые функции от х и y . Если u и u дробно-линейно зависят от x и y :

Большая Советская Энциклопедия (ПР) - i-images-153291115.png
,

Большая Советская Энциклопедия (ПР) - i-images-175086802.png
,

то имеет место общее проективное П. точек плоскости в прямые плоскости. Если при этом b1 = a2 , c1 = -a, c2 = -b, то получается полярное П. относительно некоторой линии второго порядка (см. Полюсы и поляры ). В частности, когда u = х и u = у, получается полярное П. относительно окружности x2 + y2 = 1. При этом каждой точке на плоскости (х, у ) соответствует прямая на плоскости (х’, у' ). Кривой Г на плоскости (х, у ) соответствует семейство прямых, касающихся некоторой кривой Г’ (или проходящих через одну и ту же точку). Этим устанавливается соответствие между кривыми плоскости (х, у ), рассматриваемыми как множество своих точек, и кривыми плоскости (х’, у' ), рассматриваемыми как огибающие своих касательных. Более общими являются П., задаваемые формулой F (x, y, x’, y' ) = 0. Если задать x и y , то эта формула определяет некоторую кривую на плоскости (х’, у' ), а если задать x' и y’, то определяется кривая на плоскости (х, у ). Этим устанавливается соответствие точек одной плоскости двухпараметрическому множеству кривых другой плоскости. Указанное соответствие можно распространить до соответствия между кривыми одной плоскости, рассматриваемыми как множество своих точек, и кривыми другой плоскости, рассматриваемыми как огибающие соответствующего семейства кривых. При этом П. касающиеся друг друга кривые одной плоскости переходят в касающиеся друг друга кривые другой плоскости. Поэтому описанные П. называются контактными П., или П, прикосновения (см. Прикосновения преобразования ).

  Аналогично П. плоскости определяются П. многомерных (в частности, трёхмерных) пространств. Для каждой из разобранных выше групп П. плоскости имеется трёхмерный аналог, получающийся из неё увеличением числа преобразуемых переменных. Так, группе 1 соответствует группа ортогональных преобразований , группе центро-аффинных П. — группа невырожденных линейных преобразований и т.д. Примером группы П. четырёхмерного пространства является группа Лоренца (см. Лоренца преобразования ), играющая важную роль в теории относительности. П. многомерных пространств используются в анализе при вычислении кратных интегралов, так как позволяют свести заданную область интегрирования к более простой области.